Skip to content

Teure Technik? – Bau eines Robotergreifarms aus günstigen Materialien

Roboter begeistern Schüler*innen aller Altersklassen. Die Verwendung von Robotern im technischen Unterricht sorgt für gesteigertes Interesse und Motivation, da Inhalte anhand von faszinierenden Realobjekten greifbar gemacht werden. Allerdings scheitern spannende Unterrichtsvorhaben häufig an fehlenden finanziellen Mitteln. Im Folgenden wird ein Unterrichtsprojekt vorgestellt, bei dem die Schüler*innen einen Roboterarm aus kostengünstigen Materialien bauen, anhand dessen unterschiedlichste Themengebiete aus dem MINT-Bereich aufgegriffen werden können.

Ein Beitrag von Colin Peperkorn und Prof. Dr. Claas Wegner

Je nach behandeltem Thema können die Bauphasen auch häufiger unterbrochen und mit fachspezifischen Inhalten gefüttert werden, was vor allem bei jüngeren Lerngruppen für eine Auflockerung der Arbeitsphasen sorgt. Zusätzlich bietet das Unterrichtsprojekt die Chance für einen fächerübergreifenden Ansatz. So kann die Konstruktion des Arms im Technikunterricht verortet werden. Hier kann darüber hinaus an Weiterentwicklungen gearbeitet werden. Dabei ist beispielsweise eine drehbare Basisplatte oder die Verwendung alternativer Baustoffe denkbar. Anschließend kann der Greifarm als Übergang zum Inhaltsfeld der soziotechnischen Systeme genutzt werden, indem Greifsysteme in industriellen Fertigungsanlagen aufgegriffen werden. Im Fach Physik kann der Greifarm im Rahmen des Inhaltsfelds Kraft, Druck, mechanische und innere Energie genutzt werden. Im Fach Biologie können zum Beispiel Themen wie die verschiedenen Gelenktypen, die Hand des Menschen oder Nachhaltigkeit behandelt werden. Im Fach Mathematik ist anhand der verschiedenen Bewegungsebenen, Formen und Winkel des Greifarms ein Einstieg in die Geometrie denkbar.

Grundplan des Roboterarms

Der Roboterarm setzt sich aus 23 Einzelteilen zusammen, die vor dem Zusammensetzen aus Pappe ausgeschnitten werden müssen (Schnittmuster siehe „Begleitendes Material“). Die beiden Scharniergelenke werden mithilfe von Holzspießen, die durch Kleber und kleine Pappquadrate befestigt werden, verbaut. Für das Greifsystem wird darüber hinaus Draht verwendet, um kleine Haken zu formen, die eine Bewegungsübertragung in beide Richtungen ermöglichen. Die Spritzen ermöglichen den Antrieb des Roboterarms mithilfe der Hydraulik. Je nach gesetztem Themenschwerpunkt können verschiedene Bauteile des Roboterarms in den Fokus gerückt werden.

Bauphase

Eine detaillierte Bauanleitung wird als Tutorial-Video bereitgestellt. Im ersten Schritt werden die benötigten Teile auf Pappe aufgezeichnet, ausgeschnitten und die notwendigen Löcher für die Gelenke vorgebohrt. Anschließend werden das Grundgerüst und der Ausleger des Greifarms zusammengesetzt, welche auf einer verstärkten Basisplatte montiert werden. Danach wird das Greifsystem des Arms zusammengebaut und am Ausleger befestigt. Im nächsten Schritt wird das „Antriebssystem“ des Roboterarms montiert. Dafür werden zunächst die Spritzen entsprechend präpariert. Hier werden die Kolben mit einem Dosenlocher oder Standbohrer mit passenden Löchern versehen. Je nach Altersgruppe sollte dies ggf. die Lehrkraft übernehmen.

Material & Werkzeug

  • Pappe (alter Versand- oder Schuhkarton)
  • Holzspieße
  • Musterbeutelklemmen
  • Draht oder große Büroklammern
  • Heißkleber oder Modellkleber
  • 6 Spritzen (10 ml)
  • ca. 1 Meter Gummischlauch (4/6)
  • Kabelbinder
  • Cutter
  • Schere
  • Standbohrer/Akkuschrauber (4 mm)
  • Heißklebepistole

geschätzte Kosten pro Projekt: ~ 5,00 €

Anschließend werden mithilfe der Kabelbinder Befestigungsösen an den Zylindern der Spritzen angebracht. Im nächsten Schritt werden die vorbereiteten Spritzen an den entsprechenden Stellen am Greifarm eingesetzt und durch wassergefüllte Schläuche mit den ebenfalls wassergefüllten Steuerungsspritzen verbunden. Abschließend sollte der Greifarm getestet werden. Durch das Eindrücken und Herausziehen der Steuerungsspritzen sollte die Bewegung auf die Gelenke des Greifarms übertragen werden. Nach dem ersten Test muss der Roboter ggf. überarbeitet werden. Hierbei müssen möglicherweise einzelne Teile nachjustiert werden. Ein häufiges Problem bei der Steuerung des Arms ist Luft in den Spritzen und Gummischläuchen. In diesem Fall müssen die Steuerungsspritzen und Schläuche noch einmal abmontiert und ohne Lufteinschlüsse befüllt werden.

Beispielhafte Lernziele

Methodisch-handwerkliche Fähigkeiten

Die Schüler*innen können …
… fachgerecht mit Werkzeugen und Werkstoffen umgehen.
… die festgelegten Sicherheitsregeln beachten.
… vorgegebene Arbeitsschritte selbstständig erfassen und durchführen.
… die Steuerung von hydraulischen Systemen übernehmen und gezielt damit arbeiten.

Fachliche/intellektuelle Fähigkeiten

Die Schüler*innen können …
… die Wirkungsweise von hydraulischen bzw. pneumatischen Systemen nachvollziehen und übertragen.
… an Beispielen energetische Veränderungen an Körpern und die mit ihnen verbundenen Energieübertragungsmechanismen einander zuordnen.
… verschiedene Stoffe bzgl. ihrer mechanischen Stoffeigenschaften vergleichen und unterscheiden.

Die angestrebten Lernziele des Unterrichtsprojekts variieren je nach Fach, Thema und Altersgruppe.

Resümee & Einsatzmöglichkeiten

Das vorgestellte Unterrichtsprojekt bietet die Möglichkeit, sich die aktivierenden Aspekte der Robotik im Unterricht ohne hohe Kosten zunutze zu machen. Zunächst werden dabei vor allem handwerkliche Grundlagen und Kenntnisse über verschiedene Materialien und Werkzeuge vermittelt. Durch die mögliche Einbettung in verschiedene naturwissenschaftliche und technische Fächer kann der Robotergreifarm aus Pappe als Einstieg für viele verschiedene Themenbereiche genutzt werden. Alles in allem bietet der Bau des Roboterarms vielfältige Bezugspunkte und kann variabel in verschiedenen Fächern eingesetzt werden. Dabei können sowohl handwerkliche Fähigkeiten als auch fachspezifische Inhalte motivierend und objektorientiert unterrichtet werden, ohne dabei auf „teure Technik“ zurückgreifen zu müssen. Der Einsatz des Papproboters wurde sowohl im Präsenz- als auch im Distanzunterricht getestet und ließ sich gut mit den behandelten Inhaltsfeldern kombinieren.

Begleitendes Material

Im Downloadbereich finden Sie das Schnittmuster für den Pappgreifarm im PDF-Format. Zusätzlich befindet sich dort das begleitende Tutorial zum Bau des Roboterarms. Um das geplante Unterrichtsvorhaben digital zu unterstützen, haben wir für Sie hier das 3-D-Modell des Roboterarms als .obj-Datei bereitgestellt. Damit das Modell z. B. in der browserbasierten 3-D-Modellierungssoftware Tinkercad (oder einer alternativen 3-D-Software) verwendet werden kann, muss die Datei zunächst heruntergeladen werden. In Tinkercad muss anschließend ein „Neuer Entwurf“ aufgerufen werden, um dann die .obj-Datei des Modells durch einen Klick auf die Schaltfläche „Importieren“ am oberen rechten Bildrand zu öffnen. Nun kann das Modell beliebig bearbeitet und erweitert werden. Die Schüler*innen können so das Modell genauer betrachten bzw. auch im Unterricht weiterentwickeln.

Download

Tutorial der Bauanleitung, Schnittmuster und  3-D-Modell des Roboterarms als .obj-Datei

Colin Peperkorn

ist wissenschaftlicher Mitarbeiter im Osthushenrich-Zentrum für Hochbegabungsforschung an der Fakultät für Biologie (OZHB) an der Universität Bielefeld und beschäftigt sich in seiner Forschung mit der Diagnostik und Förderung naturwissenschaftlicher Begabung.

Prof. Dr. Claas Wegner

ist Leiter des Osthushenrich-Zentrums für Hochbegabungsforschung an der Fakultät für Biologie (OZHB) an der Universität Bielefeld und beschäftigt sich in seiner Forschung mit der Diagnostik und Förderung naturwissenschaftlicher Begabung

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Programmieren Lego
Gesponserte Inhalte
23. Januar, 2023
Wer keinerlei Erfahrung mit digitalem Unterricht hat, der möchte das Thema oft gar nicht aufgreifen. Aber mit dem handlungsorientierten Lernkonzept SPIKE TM Essential von LEGO® Education gelingt es spielend leicht, Grundschulkindern der Klassen 1 bis 4 die Grundprinzipien des Programmierens beizubringen.
Waerme
23. Januar, 2023
Mithilfe von Thermografie- oder Wärmebildkameras lässt sich die für unsere optische Wahrnehmung nicht erfassbare Infrarotstrahlung detektieren und sichtbar machen. Die von verschiedenen Gegenständen oder Lebewesen emittierte Wärmestrahlung wird durch die Programmierung der Kamera so umgerechnet, dass sogenannte Falschfarbenwärmebilder entstehen. Unterrichtliche Erfahrungen zeigen, dass Lernende diese Farbcodierung zumeist intuitiv verstehen.
Citizen Science © Gesine Born
5. Januar, 2023
Pinguine in der Antarktis zählen, Galaxietypen identifizieren oder Tiere der Serengeti bestimmen – Citizen Science bietet vielfältige Möglichkeiten zum Mitforschen für Schüler*innen.
2022_11_24_Schulmatrial EO Banner_ohne Text und Logo
Gesponserte Inhalte
1. Dezember, 2022
Das Schulmaterial der Deutschen Raumfahrtagentur im DLR und Klett MINT erklärt anschaulich, wie Erdbeobachtung funktioniert und welchen Nutzen der Blick von oben für uns auf der Erde hat.
Blogbeitrag_Präparate-Hosentasche_Header
25. November, 2022
Das Mikroskopieren stellt eine für die Naturwissenschaften einzigartige Arbeitsweise dar und ist als eine Form des Untersuchens für den Biologieunterricht von besonderer Bedeutung. Beim Mikroskopieren werden die Sinne durch das Mikroskop erweitert und Objekte sowie Phänomene der Natur erfahrbar, die makroskopisch nicht untersucht werden können. Neben den systematischen Beobachtungen können aber auch weitere Fähigkeiten gefördert werden.
Wolf
14. Oktober, 2022
Seit über 20 Jahren leben wieder Wölfe in Deutschland. Die Rückkehr des Wolfes wird von Naturschutzgruppen begrüßt und von Jäger*innen sowie Nutztierhalter*innen kritisch gesehen. Zu Recht? Betrachten wir einmal die von der Dokumentations- und Beratungsstelle des Bundes zum Thema Wolf (DBBW) veröffentlichten Daten durch die Mathematikbrille.
MZ-02-22_Beitragsbild-3D-Druck
25. August, 2022
Es scheint ein Charakteristikum des fortschreitenden 21. Jahrhunderts zu sein, dass unser Alltag geprägt ist von globalen Krisen, die von der Menschheit nur dann gelöst werden können, wenn sie sich kollektiv intelligent verhält. Ob und wie das gelingen kann, ist mit Sicherheit auch eine Frage unseres Bildungssystems.
MZ-02-22_Blogbeitrag_Fischereispiel
8. August, 2022
Auch in der Wirtschaftswissenschaft werden Experimente mittlerweile zur Untersuchung einer Vielzahl von Fragestellungen genutzt: Die experimentelle Wirtschaftsforschung gilt als etablierte Disziplin.
MZ-02-22_Beitragsbild_Energie
29. Juli, 2022
Biomasse, Sonnenenergie, Windkraft und Wasserkraft sind die Themen der Zukunft. Grund genug, sie bereits heute auf spielerische Weise in den Unterricht einzubinden. Dieser Beitrag gibt spannende Unterrichtsideen in Form von Stationen und Experimenten.
MZ-02-22_Beiragsbild-Hecken
8. Juli, 2022
Hecken sind viel mehr als nur ein Sichtschutz für Haus und Garten. Sie sind ein wichtiger Lebensraum, in dem sich so manche tierische Überraschung versteckt, und können zudem Treibhausgasemissionen kompensieren – vorausgesetzt, es handelt sich um Naturhecken aus einheimischen Sträuchern.
MZ-01-22_Beitragsbild_Rätsel-Würfelaufkleber
8. Juni, 2022
Auf MINT Zirkel gibt es Knobel- und Rätselspaß mit Heinrich Hemme.
MZ-01-22_Beitragsbild_Geldscheine
7. Juni, 2022
Schaut man in die Geldbörsen in aller Welt, so entdeckt man viele Banknoten, die voller Mathematik, Physik und Astronomie sind. Wer nach Tadschikistan reist, wird mit großer Sicherheit auch einen 20-Somoni-Schein in seiner Geldbörse haben. Darauf ist der Universalgelehrte Avicenna abgebildet.