Skip to content

Das eigene Wohnquartier mathematisch erkunden

Die vertraute Wohnumgebung bietet mit ihren Gebäuden, Plätzen und Parks immer wieder Anlass, diese unter mathematischen Gesichtspunkten zu erkunden. Im vorliegenden Beitrag werden beispielhaft hierzu verschiedene Aufgaben vorgestellt.

Ein Beitrag von Christoph Maitzen

Wir Menschen benutzen tagtäglich die gleichen Wege zum Einkaufen, zur Schule oder zur Arbeit. Viele Fassaden oder Ansichten sind uns vertraut. Mathematische Themen wie Symmetrie, Winkel, Flächen, Volumen sowie Schätzen und Runden können Anlass sein, einen anderen – einen mathematischen Blick auf das uns bekannte Wohnquartier zu werfen.

Das Wohnquartier mit einem mathematischen Blick betrachten

Eine Möglichkeit ist es, Schüler*innengruppen mit einem offenen Arbeitsauftrag loszuschicken. Für das Thema Symmetrie könnte der Arbeitsauftrag lauten: „Geht in Dreiergruppen in die nähere Umgebung der Schule und fotografiert mit dem Handy Gegenstände, die Symmetrien zeigen. Ihr habt dafür 30 Minuten Zeit.“ Die Schüler*innengruppen kehren mit einer Vielzahl an Bildern zurück, die sie nun sichten sollen, um zwei bis drei besonders gelungene Bilder auszuwählen und der Klasse anschließend zu präsentieren.

Eine andere Möglichkeit ist es, Schüle*rinnengruppen zu ausgewählten Objekten in der näheren Schulumgebung zu schicken. Der Arbeitsauftrag könnte lauten: „Die Gruppe A geht in die XY-Straße Nr. Z., in der sich ein Fachwerkhaus befindet.

a) Notiere, welche geometrischen Flächen an der Fassade zu sehen sind.
b) Beschreibe und skizziere, welche Symmetrien und welche Symmetrieachsen an der Fassade zu erkennen sind.“

Die Gruppe könnte aufschreiben, dass sie an der Fassade Rechtecke, Dreiecke, verschiedene Halbkreise, Trapeze, Rauten und weitere zusammengesetzte Flächen sowie Flächen sieht, die durch Viertelkreise oder gekrümmte Linien begrenzt werden. Zu den Symmetrien und Symmetrieachsen könnten sie formulieren: 

„Achsensymmetrisch sind die Fenster mit den Streben und die verschiedenen in weiß verputzten Formen, d. h. Rechteck, Halbkreise, Trapeze und die zusammengesetzten Flächen zwischen den dunklen Holzbalken. Der Giebel ist als Ganzes achsensymmetrisch gebaut.“ Für die meisten Schüler*innen wird es sicher einfacher sein, die Formen zu skizzieren und die Symmetrieachsen einzuzeichnen.

Größen abschätzen und überschlagen

Hin und wieder sind Gegenstände zu entdecken, die zu groß oder zu klein geraten scheinen, wie hier im Beispiel ein übergroßes Hufeisen. Hier ergeben sich Anknüpfungspunkte für fantasievolle Fragestellungen.

Hufeisen an einer Hauswand

Zu einem Hufeisen an einer Hauswand könnte die Aufgabe lauten: „Die geflieste Fläche hat eine Breite von etwa 6,6 Meter. Schätze durch eine Rechnung ab, wie groß in etwa ‚das Pferd‘ zu dem Hufeisen an der Wand sein müsste.“ Zur Lösung der Aufgabe ist die Breite des Hufeisens an der Wand abzuschätzen, wobei die Fliesenanzahl abgezählt werden kann:

Für ein reales Pferd sind die Hufeisenbreite (ca. 15 Zentimeter) und die Pferdegröße (Widerrist – erhöhter Übergang vom Hals zum Rücken: ca. 1,7 Meter) zu recherchieren.

 

Mit diesen Werten ergibt sich:

Typische Größen schätzen können

Im Alltag kommt es immer wieder vor, dass die Raumhöhe oder eine Wandlänge abzuschätzen ist. Hier bieten die Maße einer Tür oder eines Fensters Anhaltspunkte für eine erste Abschätzung. Im Außenbereich des Wohnumfelds können Länge und Breite von Mauer- oder Pflastersteinen sowie Gehwegplatten Schätzlängen für die Überschlagsrechnung anbieten. Für den abgebildeten Pflanzkübel könnte die Aufgabe lauten: „Zur Verschönerung von Fußgängerzonen werden vor den Geschäften Pflanzkübel mit einer quadratischen Grundfläche aufgestellt. Die Pflasterung der Fußgängerzone besteht aus Pflastersteinen mit einer Breite von ca. zehn Zentimetern. Schätze mithilfe einer Rechnung das Innenvolumen des Pflanzkübels ab.“

Ausgehend von der angegebenen Pflastersteinbreite ergibt sich sofort für die untere Kante des Pflanzkübels mit vier Pflastersteinen eine Breite von etwa 40 Zentimetern. Der Pflanzkübel hat die Form eines Pyramidenstumpfes. Um die Rechnung einfach zu gestalten, kann das Volumen durch einen Quader mit quadratischer Grundfläche modelliert werden. Die mittlere Breite des Pflanzkübels kann aus der oberen und unteren Kantenlänge gewonnen werden. Das Längenverhältnis im Bild von oberer Kantenlänge zu unterer Kantenlänge beträgt etwa 1,5. Damit ist die obere Kante 1,5 × 40 Zentimeter, also 60 Zentimeter lang. Die mittlere Breite des Pflanzkübels beträgt somit

Pflanzenkübel

Auch Gegenstände auf einem Spielplatz wie dieser Durchgang in einer Holzwand (siehe Abbildung) eignen sich für interessante Schätzaufgaben: „Auf einem Kinderspielplatz befindet sich die auf dem Foto abgebildete Holzwand (Höhe 186 Zentimeter, Breite 150 Zentimeter). Der Durchgang ist 122 Zentimeter hoch und an der breitesten Stelle (grün gestrichenes Holz) 72 Zentimeter breit.

a) Berechne, wie groß die Holzfläche ohne Durchgang wäre (Angabe im m²).
b) Schätze durch eine Rechnung ab, wie groß die Fläche des Durchgangs etwa ist.“

Der erste Aufgabenteil stellt eine Annäherung an den Sachverhalt dar und soll die Umwandlung der Längen- bzw. Flächenmaße von Zentimeter in Meter bzw. Quadratzentimeter in Quadratmeter wiederholen. Der Lösungsweg könnte so aussehen:

Für den zweiten Aufgabenteil gibt es grundsätzlich zwei Lösungsmöglichkeiten. Zum einen das Breitenverhältnis von der unteren Durchgangsbreite zur Holzwandbreite aus dem Foto durch Messen zu ermitteln, zum anderen die untere Durchgangsbreite optisch grob orientiert an der
Holzwandbreite abzuschätzen. Die erste Möglichkeit führt zur folgenden Rechnung: Das Breitenverhältnis von der unteren Durchgangsbreite zur Holzwandbreite aus dem Foto beträgt 5 zu 13. Damit ergibt sich für die untere Durchgangsbreite

und damit weiter für die Durchgangsfläche

Die zweite Möglichkeit führt zu folgender Überlegung: Die breiteste Stelle des Durchgangs ist 72 Zentimeter breit, dies ist fast die Hälfte der Gesamtbreite von 150 Zentimetern. Die untere Durchgangsbreite ist aber deutlich schmaler als die breiteste Stelle des Durchgangs. Also vielleicht ein Drittel der Gesamtbreite oder etwas mehr, d. h. 55 Zentimeter. Damit ergibt sich eine Durchgangsfläche von

Die Fläche des Durchgangs liegt dann etwa bei 7.000 Quadratzentimetern oder 0,7 Quadratmetern.

Durchgang in einer Holzwand

Was bringt es?

Mit den dargestellten Beispielen möchte ich Lehrer*innen anregen, mit ihrer Lerngruppe das eine oder andere Mal eine Erkundung in die nähere Umgebung ihrer Schule oder im Rahmen eines Ausfluges zu unternehmen. Anlässlich des aktuellen Unterrichtsthemas (Winkel, Symmetrie, mathematische Formen oder Körper, Steigung, …) können Schüler*innen in Kleingruppen auf eine mathematische Entdeckungsreise gehen. Nebenbei erfahren die Lernenden, dass es in ihrer Lebensumwelt und in ihrem Wohnquartier viele und unterschiedliche Bezüge zur Mathematik gibt.

Über den Autor

Christoph Maitzen

ist Diplom-Physiker und arbeitet als Gymnasiallehrer für die Fächer Mathematik und Physik an der Ziehenschule in Frankfurt/Main. Er ist Mitherausgeber der Fachzeitschrift „Mathematik 5–10“ (Friedrich Verlag) und aktiv im Verein Mathematik-Unterrichts-Einheiten-Datei (MUED.de). Seit 2008 veröffentlicht er als Autor Fachartikel, Fach- und Schulbücher.

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Zwei Mädchen bauen mit LEGO Modellen
Gesponserte Inhalte
22. Oktober, 2024
Auf die tägliche Frage „Und, wie war es heute in der Schule?“ ernten Eltern von ihren Sprösslingen fast immer die eher unbefriedigende Antwort: „Gut.“ Manchmal gibt es lediglich ein kurzes Schulterzucken. Nur in Ausnahmefällen sprudeln die Kinder über und berichten begeistert von einem spannenden Projekt, einer interessanten Schulstunde oder einer mitreißenden Gruppenarbeit. Dabei sind es genau diese emotionsgeladenen Momente, die nachhaltig auf die Schüler:innen wirken und sie am nächsten Tag motiviert in die Schule gehen lassen. Wie können wir im Schulalltag mehr solcher mitreißenden Momente schaffen?
Arbeit mit Werkzeugen
13. August, 2024
Der Wolpertinger (lateinisch crisensus crisensus) ist ein bayrisches Fabelwesen, das sich aus mehreren Tierarten zusammensetzt und in verschiedenen Formen auftreten kann. Er eignet sich besonders für den Einsatz im naturwissenschaftlichen Unterricht, da ebendiese individuelle Zusammensetzung eine tiefergehende Beschäftigung mit den Lebewesen des Waldes und den unterschiedlichen Besonderheiten erlaubt, die sie auszeichnen. Hier kommen konkrete Ideen, wie das auf spannende Weise umgesetzt werden kann.
Kinder an Laptops
3. Juli, 2024
digi.reporter ist ein kinderleicht zu bedienendes Content-Management-System (CMS) für Schüler:innen ab der Grundschule, mit dem sie lernen, eigenständig und rechtskonform multimediale Beiträge für eine webbasierte Veröffentlichung wie einer Online-Schulzeitung zu verfassen.
Mädchen nutzt KI im Unterricht am Telefon
26. Juni, 2024
Einen kreativen Unterrichtseinstieg suchen, differenzierte Lernziele erstellen, Fehlerschwerpunkte in Klassenarbeiten erarbeiten oder auch einen Entwurf für einen Elternbrief formulieren lassen – künstliche Intelligenz (KI) eröffnet uns schon jetzt ganz schön nützliche Möglichkeiten zur Vereinfachung unseres Unterrichtsalltags. Aber auch unseren Schüler:innen bietet KI mindestens genauso viel Hilfestellung bei der Bearbeitung schriftlicher Lern- und Leistungsaufgaben.
LEGO Education Fußball-Unterrichtseinheit
Gesponserte Inhalte
27. Mai, 2024
Ab Juni wird ganz Deutschland wieder verstärkt im Fußball-Fieber sein. Auch viele Kinder begeistern sich bereits früh für den Sport und haben mindestens genausoviel Vorfreude wie Erwachsene. Dank der neuen Lerneinheiten von LEGO® Education SPIKE™ Essential bringen Sie den Fußball-Hype ab sofort auch in Ihr Klassenzimmer. Spiel, Spaß und maximale Aufmerksamkeit sind beim Bauen und Programmieren von Modellen rund um das Thema Fußball garantiert!
Header_MZ Blogbeitrag_04-2023 (15)
21. Mai, 2024
Die Vorgaben des Instituts zur Qualitätsentwicklung im Bildungswesen (IQB) für das Abitur in Mathematik lassen den Schulen zwei Alternativen bei der Wahl des rechnerischen Hilfsmittels: das modulare Mathematiksystem (MMS) und den wissenschaftlichen Taschenrechner (WTR). Bei der Entscheidung sollte jedoch nicht das Abitur im Fokus stehen, sondern der fachdidaktische Nutzen für den Unterricht.
LE-SPIKE Essential-1920x1080px
Gesponserte Inhalte
9. April, 2024
Unsere Welt verändert sich schnell, fast täglich gibt es technische Innovationen. Die Art und Weise, wie Kinder lernen und wichtige Fähigkeiten erwerben, muss mit diesen Veränderungen Schritt halten. Wir brauchen einen Unterricht, der die Kinder optimal auf die Welt von morgen vorbereitet und die lebenslange Lust am Lernen weckt.
Header_MZ Blogbeitrag_04-2023 (17)
25. März, 2024
Trotz einer Reihe internationaler Programme wie der Weltdekade „Bildung für nachhaltige Entwicklung“ (2005–2014) oder dem UNESCO-Weltaktionsprogramm BNE“ (2015–2019) sind Inhalte aus dem Kontext Bildung für nachhaltige Entwicklung (BNE) noch nicht an allen Stellen in der deutschen Schulbildung und insbesondere im Fachunterricht Mathematik angekommen.
Version 2
29. Januar, 2024
Energieträger sind für die Wärmeerzeugung in Gebäuden unerlässlich und werden oft in Form von fossilen Brennstoffen wie Gas, Öl, Holz oder Kohle bereitgestellt. Einerseits ist aufgrund ihres begrenzten natürlichen Vorkommens ein sorgsamer Umgang mit diesen Ressourcen geboten. Andererseits entsteht durch die Verbrennung fossiler Energieträger das Treibhausgas CO2, das als Katalysator des Klimawandels gilt.
Header_MZ Blogbeitrag_04-2023 (6)
16. Januar, 2024
Es gehört zu den Kernaufgaben einer Lehrkraft, Schüler*innen Rückmeldungen auf ihre Lernleistung zu geben – in Form von Noten oder mit mündlichem oder schriftlichem Feedback. Bei der Methode des Peer Assessments wird diese Aufgabe von den Lernenden selbst übernommen: Sie geben sich wechselseitig Rückmeldung auf ihre erbrachte Leistung. Ob sie davon profitieren können, untersucht das Forscherteam Double, McGrane und Hopfenbeck in einer 2020 erschienenen Metaanalyse. Sie prüfen dabei zudem, wie die Methode effektiv im Unterricht umgesetzt werden kann.
Header_MZ Blogbeitrag_04-2023 (5)
11. Januar, 2024
Anlässlich des Internationalen Tags gegen Rassismus am 21. März 2023 veröffentlichte das Thüringer Bildungsministerium eine Handreichung für Thüringer Schulen zur Anwendung der Jenaer Erklärung gegen Rassismus im Unterricht. Die Publikation der Autoren Karl Porges und Uwe Hoßfeld und der AG Biologiedidaktik der Friedrich-Schiller-Universität Jena ist ein konkretes inhaltliches Angebot für rassismuskritische Bildungsarbeit an Thüringer Schulen.
Header_MZ Blogbeitrag_04-2023 (2)
20. Dezember, 2023
Der Einsatz von Escape Games oder EduBreakouts im Unterricht ist heute bei Weitem keine so exotische Methode mehr wie noch vor ein paar Jahren. Mittlerweile gibt es zahlreiche Formate dieses kreativen Konzepts und alle sorgen für motivierende Abwechslung im Klassenzimmer. Auch aus meinem Unterricht sind Escape Games kaum noch wegzudenken und meine Schüler*innen fordern diese regelmäßig mit den Worten ein: „Herr Bendlow, wann machen wir mal wieder ein Escape Game?“