Skip to content

Leben auf der Nachbarwelt?

Biomarker in den Wolken der Venus: Der Nachweis von Monophosphan-Molekülen sorgte für Schlagzeilen. Stammen sie von Mikroben?

Ein Beitrag von Rüdiger Vaas

Die Entdeckung extraterrestrischer Lebensformen wäre eine Sensation – und würde auch ein neues Verständnis des irdischen Lebens ermöglichen. Die Publikation von Spektralmessungen der Venus-Atmosphäre letztes Jahr führte daher zu einem weltweiten Medienrummel, weil sich die Daten vielleicht nur durch Stoffwechselaktivitäten erklären lassen.

Überraschender Phosphorwasserstoff

Am 14. September 2020 gab ein internationales Wissenschaftsteam um Jane Greaves von der University of Cardiff im britischen Wales den Nachweis von Monophosphan in der Venus-Atmosphäre bekannt. Dieses Phosphorwasserstoff- Molekül (PH3), kurz Phosphan genannt, kann in der gemessenen Konzentration unter den bekannten chemischen Bedingungen nicht auf unserem Nachbarplaneten entstehen. Es wird auf der Erde aber von manchen anaeroben Bakterien erzeugt – auch im menschlichen Darm – und gilt seit Jahren als Biomarker für Exoplaneten: als Indikator für Lebensformen dort, falls Spektralmessungen Phosphan in fremden Planetenatmosphären nachweisen könnten. Gibt es also womöglich
Mikroben in den Schwefelsäure-Wolken unserer Nachbarwelt? Diese Schlussfolgerung hat das Entdeckerteam auf einer Pressekonferenz und zugleich in einem Artikel in der Fachzeitschrift nature astronomy zwar diskutiert, aber nicht behauptet. Doch schon die Möglichkeit ist spektakulär. Anstoß des interplanetarischen Rummels waren Radiowellen- Messungen. Sie erfolgten im Juni 2017 vom James Clerk Maxwell Telescope (JCMT) auf Hawaii und noch genauer im März 2019 vom Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Bei 1,123 Millimeter Wellenlänge beziehungsweise 266,94 Gigahertz Frequenz zeigte sich überraschenderweise eine Absorptionslinie, die von Phosphan zu stammen scheint – aus der oberen Wolkenschicht, mindestens 55 Kilometer über dem Boden. Die Konzentration betrug bis zu 20 Teile pro Milliarde Teilen (oder 0,000002 Prozent) – etwa tausendmal so viel wie in der irdischen Atmosphäre.

Mikroben in Venus-Wolken?

Weil Phosphan durch chemische Reaktionen und die Ultraviolettstrahlung der Sonne im Verlauf weniger Stunden bis Jahre abgebaut wird, muss es ständig nachgeliefert werden. Die Forscher hatten 74 potenzielle Produktionswege in Betracht gezogen – chemische Reaktionen im Gas und in den Wolken, mit dem Schwefeldunst, mit Mineralien im Staub und auf der Oberfläche. Kein Prozess lieferte genug Phosphan, um die Messwerte zu erklären. Daher, so die Schlussfolgerung, muss das Phosphan entweder ständig durch bislang unbekannte geo- oder photochemische Reaktionsketten gebildet werden oder aber durch biochemische Prozesse in den Wolken. Überzeugende Modelle für eine bislang übersehene Venus-Chemie gibt es auch mehr als ein halbes Jahr nach der Publikation nicht. Und für eine biologische Erklärung spricht außerdem, dass das Phosphan nicht gleichmäßig verteilt war, sondern an den Polregionen fehlte und hauptsächlich in mittleren Breiten vorkam, wo die Luftzirkulationsmuster die stabilsten Umweltbedingungen für Leben böten. Die unteren Venus-Wolken wären mit Temperaturen zwischen 40 und 90 Grad Celsius sowie einem Druck um 1 Bar sogar für thermophile irdische Mikroben lebensfreundlich. 

Phosphorwasserstoff in der Venus-Atmosphäre könnte auf eine exotische Chemie hindeuten – oder auf ein Stoffwechselprodukt extraterrestrischer Organismen

Da es hier kaum Wasser gibt, müssten sie sich allerdings in Aerosolen aufhalten. Diese können monatelang in der geschlossenen Wolkendecke flottieren. Dazu hatte ein siebenköpfiges Team um die Planetenwissenschaftlerin Sara Seager vom Massachusetts Institute of Technology – darunter auch Jane Greaves – bereits im Februar 2020 einen hypothetischen Lebenszyklus vorgeschlagen.

Kontroverse Messungen

Weitere Astronomen konnten den Nachweis allerdings nicht bestätigen. Mit anderen Analysemethoden und Atmosphären-Modellen fanden sie keine überzeugende Spektrallinie, hielten diese für ein Artefakt der Datenverarbeitung oder für eine Verwechslung mit Schwefeldioxid. Jane Greaves und ihr Team analysierten ihre Messungen inzwischen nochmals und berücksichtigten dabei eine neue Eichung der ALMA-Daten. Ergebnis: Das Phosphan- Signal ist weiterhin zu erkennen, allerdings nicht mehr so stark wie zuvor gedacht – im Durchschnitt nur ein Siebtel des ursprünglich publizierten Werts. Das mindert die statistische Signifikanz deutlich (statt 15 beträgt sie aber noch immer 4,8 Sigma, was eigentlich für eine Entdeckung ausreicht). Wenn unklar ist, ob eine bestimmte Spektralsignatur existiert und woher sie stammt, liegt es nahe, nach anderen Indizien der mutmaßlichen Quelle zu suchen. Genau das tat nun ein Team um Thérèse Encrenaz vom Pariser Observatorium, zu dem auch Jane Greaves gehört. Die Messungen erfolgten bereits im März 2015 im thermischen Infrarot bei zehn Mikrometer Wellenlänge mit dem TEXES Instrument (Texas Echelon Cross Echelle Spectrograph) am NASA-Teleskop IRTF (Infrared Telescope Facility) auf Hawaii. Es war keine Spur von Phosphan auszumachen, die Konzentration lag daher unter fünf Teilen pro Milliarde Teilen. Dies widerlegt die JCMT- und ALMA-Messungen nicht, die ein Dutzend Kilometer tiefere Atmosphärenschichten beobachteten, bringt sie aber in Schwierigkeiten. Freilich könnte der Phosphan-Gehalt mit der Zeit variieren; Schwankungen um den Faktor 10 würden den Widerspruch entschärfen. Hinzu kam eine unabhängige Phosphan- Bestätigung. Sie stammt von der US-amerikanischen Mission Pioneer-Venus 2, die am 9. Dezember 1978 mit vier Sonden in die Venus-Atmosphäre eintauchte. Auf einer war ein Massenspektrometer an Bord, mit dem die Bestandteile der Luft recht genau gemessen wurden. Doch Phosphor und seine Verbindungen wurden in den 1979 und 1980 publizierten Auswertungen nicht erwähnt. Nun haben Rakesh Mogul von der California State
Polytechnic University in Pomona und drei Kollegen die Daten von Pioneer-Venus 2 noch einmal inspiziert – und entdeckten Hinweise auf Phosphan und seine Abbauprodukte, passend zu dessen Vorkommen in 50 bis 60 Kilometer Höhe.

Neue Herausforderungen

Als Nächstes muss versucht werden, das Phosphan-Signal wiederholt zu beobachten sowie seine Verteilung und eventuelle Schwankungen in der Atmosphäre zu studieren – abhängig von Tag und Nacht, von den Jahreszeiten sowie den Breitengraden. Wenn Phosphan wirklich von Lebewesen stammt, wäre eine Variation zu erwarten. Und es müsste auch andere biologisch signifikante Moleküle geben, wenn die Venus-Atmosphäre ein Ökosystem beherbergt. Noch in diesem Jahr sind neue Messungen mit ALMA geplant. Im Infraroten soll ebenfalls wieder nach Phosphan-Spektrallinien gesucht werden – sowohl mit dem IRTF auf Hawaii als auch mit dem Flugzeug-Teleskop SOFIA (Stratospheric Observatory for Infrared Astronomy). Noch besser wären Erkundungen vor Ort. Eine Chance böte die Venus-Mission Shukrayaan-1, die die indische Raumfahrtagentur gegenwärtig vorbereitet und schon 2023 starten will. Der russische Orbiter Venera-D ist mit einer Landesonde für 2026 vorgesehen und könnte auch ein fliegendes Atmosphärenlabor der NASA mitnehmen, die zudem eine eigene Mission diskutiert. Letztlich können vielleicht nur Luftproben, die zur Erde gebracht werden, einen definitiven Aufschluss geben. Fest steht: Für eine neue Venus-Exploration war die Motivation niemals größer – denn was wäre spannender, als dort zum ersten Mal extraterrestrisches Leben aufzuspüren?

Über den Autor

Rüdiger Vaas

ist Philosoph, Publizist, Dozent sowie Astronomie- und Physik-Redakteur beim Monatsmagazin bild der wissenschaft und Autor von 14 Büchern, zuletzt „Einfach Hawking!“ (Kosmos, 2021).

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Mit Wasserstoff in eine grüne Zukunft
4. Juli, 2022
Das Pariser Klimaziel, die globale Erderwärmung auf 1,5 Grad Celsius zu beschränken, könnte noch erreicht werden. Aber es ist eine Herkulesaufgabe, für die wir den Ausbau der erneuerbaren Energien vervielfachen müssen. Und wir brauchen sogenannten grünen Wasserstoff, der mithilfe von regenerativem Strom hergestellt wird. Die Technologie spielt eine Schlüsselrolle auf dem Weg zur Klimaneutralität, die wir weltweit bis Mitte des Jahrhunderts erreichen wollen.
Der menschliche Faktor oder wie berufliches   Miteinander gelingen kann
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
Kollision der Giganten
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
Computer: Zufälle gibt es nicht
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
Schwarmverhalten – lieber gemeinsam als einsam
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
Batterien – Speicher der Zukunft?
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
Wie unsere Gedanken entstehen und warum wir sie lesen können
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.
Neues aus der Milchstraße
28. März, 2022
In den vergangenen Jahren hat sich das Verständnis von der Struktur und Entwicklung der Milchstraße enorm erweitert und teilweise gewandelt. Entdeckt wurden darin neue Spiralarme und gigantische Gebilde, weiträumige Schwingungen sowie uralte Reste kannibalisierter Zwerggalaxien.
Kann der Hund Analysis?
14. März, 2022
Wenn ein Hund nicht auf dem kürzesten (geraden), sondern auf dem zeitoptimalen (geknickten) Weg ins Wasser springt, um den Ball zu apportieren, löst er ein Minimierungsproblem. Das ist immerhin so kompliziert, dass es als Klausuraufgabe im zweiten Semester Analysis taugt. Und da kommt Timothy Pennings, Mathematikprofessor an einer kleinen Universität im ländlichen Michigan, und behauptet, sein Hund Elvis könne das auch!
Vom Feld bis auf den Teller: Was sind die besten Zutaten für kulinarischen Klimaschutz?
4. März, 2022
Unsere Ernährung ist ein echtes Schwergewicht auf der Klimabilanz. Mit durchschnittlich 1,7 Tonnen CO2-Äquivalenten pro Kopf und Jahr schlägt diese beim CO2-Fußabdruck einer und eines jeden Deutschen zu Buche. Zum Vergleich: In Indien verursacht ein Mensch für seinen gesamten Lebensstil im Durchschnitt etwa 1,7 Tonnen CO2-Emissionen. Höchste Zeit also, unsere Ernährungsgewohnheiten auf Klimadiät zu setzen.
AlphaFold – ein Algorithmus für das Protein-Origami
22. Februar, 2022
Ob Einzeller oder Vielzeller, die Lebensfunktionen in der Zelle basieren auf winzig kleinen Grundbausteinen, den Proteinen. Wie einzelne Proteine genau aussehen, wird in der Strukturbiologie erforscht. Dort werden die 3-D-Strukturen von Proteinen sichtbar gemacht und aus ihrem Aufbau zelluläre Funktionen und Wirkmechanismen abgeleitet. Mit dem lernfähigen KI-System AlphaFold 2.0 hat die Strukturbiologie nun neue Unterstützung.