Skip to content

Geheimnis Erdmagnetfeld

Warum zeigt eigentlich die Kompassnadel nach Norden? Um diese Frage zu beantworten und um die Geheimnisse des Erdmagnetfelds zu ergründen, brauchte es mehr als sieben Jahrhunderte.


Wer sich vor 1900 dem Wirken von Kompassen und des Erdmagnetismus widmete, konnte sich daran eigentlich nur die Zähne ausbeißen. Erst Mitte des 20. Jahrhunderts standen die technischen Voraussetzungen bereit, um das Erdmagnetfeld wirklich oder, sagen wir, zumindest grob zu verstehen. Bis dahin dachten sich so manche Forscher verwegene Theorien über den Erdmagnetismus aus.

Ein Phänomen, viele Koryphäen

Obwohl die Erdmagnetfeldforschung nicht gerade Glanz und Gloria versprach, umfasst ihr Who’s who erstaunlich viele Berühmtheiten. Edmund Halley beispielsweise entwickelte eine Theorie der hohlen Erde, wonach sich im Inneren unseres Planeten noch weitere Hohlkörper befinden, die ihren eigenen Magnetismus besitzen und die sich mit der äußeren Hülle um eine gemeinsame Achse drehen. Was heute vor allem als Stoff für Sci-Fi-Romane anmutet, sollte damals erklären, warum sich die Deklination, also die Abweichung der Kompassnadel vom geografischen Norden, im Laufe der Zeit ändert. Michael Faraday nutzte das Erdmagnetfeld, um in einem Experiment elektrischen Strom zu induzieren – eine Methode, die man auch in modernen Observatorien anwendet, um hochgenau das Erdmagnetfeld zu vermessen.

Erste Erkenntnisse über Magnete

Magnetische Kompasse gab es schon im alten China. Zur Orientierung auf See verwendeten die Chinesen schwimmende Kompassnadeln ab etwa dem 5. Jahrhundert. In den Mittelmeerraum drang diese technische Entwicklung allerdings erst im 12. Jahrhundert durch.

1269 verfasste der französische Gelehrte und Kreuzfahrer Petrus Peregrinus eine erste wissenschaftliche Abhandlung über Magnete. Er fand heraus, dass es zwei unterschiedliche Magnetpole gibt. Zudem experimentierte er mit kugelförmigen Magneten. Er sah, dass sich die Kompassnadeln an der Magnetkugel entlang von Meridianen ausrichten, die sich allesamt in den Polen kreuzen. An den Polen stellten sie sich senkrecht auf. Diese Meridiane heißen heute Feldlinien.

Was den Kompass lenkt

Nach einer langen Pause in Magnetismusfragen veröffentlichte William Gilbert 1600 eine neue Schrift zum Thema. Auch Gilbert hatte mit Kugelmagneten experimentiert und dabei erstaunliche Parallelen zum Planeten Erde entdeckt.

Zwei magnetische Phänomene waren damals bereits von Seefahrern beobachtet worden. Erstens zeigte die Kompassnadel nur in Ausnahmefällen wirklich nach Norden. Diese Abweichung vom geografischen Norden (Deklination) erzeugte Gilbert auf einem Kugelmagneten mit unterschiedlich verteilten Massen. Zweitens kippte die Kompassnadel nicht nur an einem Magneten, sondern auch auf dem Globus, je weiter man gen Norden oder Süden fuhr, immer mehr in die Senkrechte. Das alles führte Gilbert zu der Erkenntnis, dass die Erde selbst ein riesiger Magnet sei. Die Kompassnadel wird demnach mit ihrem magnetischen Nordpol vom magnetischen Südpol der Erde (der sich allerdings im Norden, in der Arktis, befindet) angezogen.

Wechselhaft und undurchschaubar

Allerdings entpuppte sich dieser Erdmagnet, kaum war er entdeckt, als eine harte Nuss. Die Deklination, also die Abweichung vom geografischen Norden, änderte sich im Laufe der Jahre, ohne dass sich den Wissenschaftlern ein plausibler Grund dafür erschloss. Sogar im Verlauf eines Tages gab es regelmäßige Schwankungen, wie die immer genauer werdenden Messmethoden zeigten. Da half eigentlich nur eines: Daten sammeln. Und zwar ganz viele, und das am besten weltweit und immer zur selben Zeit. Alexander von Humboldt gehörte zu den wichtigsten Verfechtern eines internationalen Forschungsprogramms zum Erdmagnetismus.

Vereinsmeier und Kreuzfahrer der Wissenschaft

Realisiert wurde dieses Programm erstmals mit dem Göttinger Verein und später mit der Magnetic Crusade, dem Magnetischen Kreuzzug der Briten. Die Messreihen wurden zunächst regelmäßig an einem Samstag für 24 Stunden im Fünfminutentakt durchgeführt und später noch ausgeweitet. Der Vergleich zeigte, dass sich die täglichen Schwankungen an normalen Tagen – abhängig von der Tageszeit vor Ort – überall auf ähnliche Weise vollzogen. An einigen Tagen aber gingen die Kurven völlig durcheinander – dann jedoch mit erstaunlichen Parallelen zwischen den verschiedenen Messstationen. Mancherorts zeigten sich dann Polarlichter. Heute weiß man, dass die täglichen Variationen zurückzuführen sind auf den Einfluss der Ionosphäre, der stromleitenden Schicht der oberen Atmosphäre, die sich durch die Sonneneinstrahlung aufwärmt und dabei ihre elektrischen Eigenschaften verändert. Unnormale Tage hingegen haben etwas mit Materieausbrüchen auf der Sonne zu tun. Geladene Teilchen werden dann mit unglaublichen Geschwindigkeiten ins Weltall geschleudert, treffen bisweilen auch die Erde und wechselwirken dann mit den Teilchen der oberen Atmosphäre. Unser Erdmagnetfeld ist unser äußerstes Schutzschild gegen den mal schnelleren, mal langsameren Teilchenstrom der Sonne, den Sonnenwind.

Ohne Elektrizität kein Magnetismus

Ohne den Beistand durch Schwesterdisziplinen wären die Geomagnetiker nicht weit gekommen. So war in der Physik schon länger ein Zusammenhang zwischen Elektrizität und Magnetismus vermutet worden. 1820 entdeckte Ørsted, dass ein stromdurchflossener Leiter ein Magnetfeld erzeugt. Zu diesem Zeitpunkt war die Ionosphäre noch unbekannt, und so stellte sich die Frage, warum sich der Erdmagnetismus im Laufe eines Tages, aber auch eines Jahres und über Jahrzehnte hinweg änderte. Ein Permanentmagnetismus, wie etwa bei einem Stabmagneten, kam wegen dieser Variabilität nicht infrage. Und so überlegten die Wissenschaftler, ob nicht gewaltige Stromsysteme per Induktion den Magnetismus der Erde erzeugten. Aber wo sollten sich diese Stromsysteme befinden?

Stromsysteme im Bauch der Erde

Tatsächlich haben all diese Strömungssysteme einen Einfluss auf das Erdmagnetfeld. Diesmal waren es die Seismologen, mit deren Hilfe die Geophysik das Innere unseres Planeten entschlüsselte. Nach Auswertung etlicher Erdbeben und der von ihnen erzeugten Wellen kamen sie zu dem Ergebnis, dass der äußere Erdkern flüssig sein musste und zudem aus einem vermutlich sehr heißen Metallgemisch bestand. Und so tauchte die Frage auf, ob das aufsteigende heißere und herunterfallende kühlere Material mit all den freien Elektronen darin nicht der Ursprung sein könnte für einen Dynamo im Inneren der Erde.

Was an sich einleuchtend klingt, war schwer zu beweisen. Viele meinten, dass der elektrische Widerstand im Inneren der Erde zu hoch sei und der Stromfluss gleich wieder zusammenbrechen würde. Zudem waren für einen sehr großen Raum sehr viele und zum Teil sehr veränderliche physikalische Größen unter einen Hut zu bringen. Die Gleichungen mussten beschreiben, wie sich die Strömungen im dreidimensionalen Raum bewegen und wie sich das magnetische Feld bildet. Sie mussten Einflussfaktoren wie etwa die Lorentzkraft, die Strömungsgeschwindigkeit, den Auftrieb, die Schwerkraft und den Druck an der jeweiligen Stelle berücksichtigen. Hinzu kamen die Rotationskräfte; zum einen, weil die Drehung der Erde um ihre Achse natürlich auch Fliehkräfte in der heißen Suppe darinnen hervorruft, und zum anderen, weil das flüssige Eisen durch Konvektion vermutlich ähnliche Wirbel bildet wie der Wasserdampf in der Atmosphäre.

Der Dynamo kann Kopfstand?

Hinzu kam noch eine weitere Komplikation, die ebenfalls mit modelliert werden musste. Bereits Anfang des 20. Jahrhunderts hatten Geophysiker an verschiedenen Orten der Welt Gesteinsproben mit umgekehrter magnetischer Polarisierung gefunden. Weitere Funde in den 1950ern entfachten einen Streit, ob es tatsächlich Umkehrungen des Erdmagneten geben könnte, in denen also der magnetische Nord- und Südpol mal eben die Plätze tauschen.

Aufschluss darüber brachte der Atlantikboden. Wissenschaftler hatten mit sensiblen Magnetometern den Ozeanboden kartiert. Dabei fanden sie ein auffälliges Muster mit Streifen, in denen der Boden magnetisch mal nach Süden, mal nach Norden ausgerichtet war. In der Mitte fand sich über die komplette Länge des Atlantiks ein vulkanisch aktives Gebirge, welches bei Island sogar aus dem Meer herausragt. Aus ihm quillt ständig neuer Ozeanboden aus den Tiefen der Erde hervor, und das erkaltende Gestein friert quasi die jeweilige Polarisierung des Erdmagneten ein. So entstand der seltsame magnetische Streifenteppich.

Dieses Umpolungsmuster zeigte zudem, dass sich der Ozeanboden aufspreizte und die anliegenden Kontinente immer weiter auseinandergedrückt wurden. Es war der fehlende Beweis für Wegeners Theorie der Plattentektonik.

Der Erdmagnetismus: veränderlich, erstaunlich, wichtig

Es war letztlich eine internationale Leistung mit vielen beteiligten Forschern, durch die der Geodynamo bestätigt wurde. Und zwar mathematisch, im Laborexperiment und sogar per Computersimulation. 1995 gelang es Gary Glatzmaier und Paul Roberts, auf einem Hochleistungsrechner ein Modell des Erdmagnetfelds durchzurechnen. Obwohl sie diese Möglichkeit gar nicht einprogrammiert hatten, vollführte die Simulation nach 40.000 Jahren eine Umpolung.

Glatzmaiers und Roberts’ Computersimulation des Erdmagnetfelds – hier abgebildet mit seinen  Feldlinien – zeigte überraschenderweise nach 40.000 Jahren eine Umpolung.  
Quelle: Gerhard Weiland, Köln, nach Vorlage von G. A. Glatzmaier / P. H. Roberts via   www.nasa.gov/audience/forstudents/postsecondary/features/29dec_magneticfield.html

Der simulierte Geomagnet stand auf einmal Kopf, und die Forschungsgemeinde atmete auf: Ihre Idee vom Geodynamo erklärte gewiss noch nicht alles, aber zumindest das große Ganze des Erdmagnetfelds. Dieser riesige Schutzschild bewahrt uns vor einiger Unbill aus dem Weltall und umgibt uns ganz unauffällig überall auf der Erde: beim Frühstück, auf dem Weg zur Arbeit und auch jetzt, hier, in diesem Augenblick.

Anke Wilde


Über die Autorin:

Anke Wilde ist Wissenschaftsjournalistin und berichtet über Themen der Geowissenschaften, der Molekularbiologie und der Wissenschaftsgeschichte. Ihr Buch „Unsichtbar und überall. Den Geheimnissen des Erdmagnetfelds auf der Spur“ ist 2019 im Kosmos-Verlag erschienen.

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Abstrakte Zusammenstellung aus Wellen, Licht und mathematischen Formeln
10. Juli, 2025
Wie entstand die Quantenmechanik? Welche Leitideen führten die Forschung vor 100 Jahren zu einer so schwer fassbaren Theorie? Und wer waren die Protagonisten dieser neuen Wissenschaft, die der scheinbar einfachen Frage nachgingen: Was ist Licht?
Verschiedene mathematische Formen wie Pyramide und Würfel
25. Juni, 2025
Wenn man einen n-dimensionalen Würfel geeignet zurechtstutzt, nimmt sein dreidimensionaler „Schatten“ bemerkenswerte Formen an. Diese faszinierenden Projektionen geben uns Einblicke in die verborgenen Strukturen höherdimensionaler Räume, die sich unserer direkten Vorstellungskraft entziehen. Doch was genau verbirgt sich hinter diesen rätselhaften Dimensionen? Und wie können wir uns das Unvorstellbare doch ein Stück weit begreifbar machen?
Mann in Warnweste prüft Solaranlage
10. Juni, 2025
Moderne Technologien, wie sie in Solarkraftwerken, künstlicher Intelligenz oder Großprojekten zur CO2-Entnahme aus der Atmosphäre eingesetzt werden, sind immer sowohl mit positiven Erwartungen in Bezug auf den gesellschaftlichen Nutzen als auch mit Befürchtungen bezüglich damit einhergehender Risiken verbunden (Dusseldorp 2021). Während wissenschaftliche Analyse und erfahrungsgestützte Expertise prognostizieren können, welche Auswirkungen neue Technologien voraussichtlich haben, bleibt die Abwägung von Nutzen und Risiko sowie deren gerechte Verteilung auf die Gesellschaft eine politische und wertgeleitete Frage, die nach demokratischen Prinzipien zu entscheiden ist (Sigwar 2021).
Mond am schwarzen Nachthimmel
27. Mai, 2025
Unser himmlischer Begleiter stabilisiert nicht nur die Erdachse, was Klimakapriolen verhindert, sondern war uns früher wesentlich näher. Ohne ihn wäre die Evolution ganz anders verlaufen …
Gruppe lachender Frauen halten brennende Wunderkerzen in den Händen
21. Mai, 2025
Am Mittwochmorgen nach dem Unterricht sagt die Lehrerin: „Die nächste Lateinstunde ist in acht Tagen.“ In acht Tagen? Meint sie also am Donnerstag nächster Woche? Nein, wahr-scheinlich nicht. Vermutlich meint sie damit den nächsten Mittwoch, auch wenn bis dahin nur sieben Tage verstreichen. Die Redewendung „in acht Tagen“ für „in einer Woche“ ist uralt und geht auf die Zählweise der Römer zurück.
Weite Moorlandschaft
22. April, 2025
Frans Martens, ein Bursche aus dem Nachbardorf des Moorprofessors Hans Joosten in den Niederlanden, radelte eines schönen Tages ein bisschen durch die Gegend, da fiel er plötzlich ohnmächtig mit seinem Fahrrad um. Der Pups eines nebenliegenden Moores hatte ihn umgehauen.
Illustration von Neutronensternen
18. März, 2025
Mit Gravitationswellen lassen sich die verborgenen Seiten des Alls belauschen. Die meisten bislang entdeckten Quellen sind kollidierende Schwarze Löcher.
Erschöpfte Frau greift sich an die Stirn
3. März, 2025
Lampenfieber vor einer Präsentation, Prüfungsangst oder einfach ein stressiger Schultag – Stress gehört für viele Schüler:innen leider zum Schulalltag, ebenso wie für Lehrkräfte. Doch zu viel davon kann die Konzentration und das Wohlbefinden beeinträchtigen. Genau hier kommt der Vagusnerv ins Spiel: Wie kein anderer Nerv hat der längste Nerv unseres Körpers, der Vagusnerv, und das damit verbundene parasympathische Nervensystem, in den letzten Jahren höchstes Interesse bei gesundheitsorientierten Menschen gewonnen. Kein Wunder, ist er doch DAS zentrale Kommunikationsorgan zwischen dem Gehirn und den Körperorganen. Das Beste: Er lässt sich aktivieren.
Zeppelin in der Abendsonne
25. Februar, 2025
Von Radaröfen haben Sie nie gehört? Auch Hydrobergbau ist Ihnen kein Begriff, ebenso wenig wie die Kohlenstaub-Lokomotive? Selbst beim Itera-Plastikfahrrad oder beim Elektropflug glimmt kein Erinnerungsfunke auf? Kein Grund zur Sorge: Fast niemand erinnert sich mehr an diese Dinge, denn es sind „gescheiterte Innovationen“, deren Existenz über kurz oder lang von der Welt vergessen wurde. In Erinnerung sind bestenfalls die angesichts verlorener Subventionsmillionen spektakuläreren Fälle, etwa die zumindest vorerst gefloppte Magnetschwebebahn Transrapid oder der 2002 wohl endgültig gescheiterte Frachtzeppelin Cargolifter, in dessen Halle sich heute immerhin vom Urlaub in den Tropen träumen lässt.
Forscherin mit Handschuhen bearbeitet eine grüne Salatpflanze im Labor mit einer Pinzette
20. Februar, 2025
Die Klimakrise verschärft sich rasant und stellt schon jetzt weltweit Menschen vor existenzielle Probleme, auch im Hinblick auf Landwirtschaft und Ernährung. Die Landwirtschaft leidet unter den Folgen der Klimakrise und muss sich an die neuen Extremwettersituationen anpassen. Zudem erhöhen das massive Artensterben und andere ökologische Folgen menschlichen Handelns zunehmend den Druck, bisherige ökonomische und soziale Praktiken zu hinterfragen und zu verändern. Ein aktuell kontrovers diskutierter Ansatz ist die Neue Gentechnik (NGT).
viele Euro-Münzen auf einem Haufen
20. Februar, 2025
Der reichste Mann der Welt ist der Entenhausener Erpel Dagobert Duck. Auch der zweit-reichste Mann ist ein Erpel. Er heißt Mac Moneysac und lebt in Simililand in Südafrika. Erst auf Platz drei kommt mit dem Amerikaner Elon Musk ein Mensch. Doch wie reich Dagobert Duck ist, darüber gibt es unterschiedliche, zum Teil stark widersprüchliche Angaben, und da er, genau wie Donald Trump, seine Steuererklärungen nicht veröffentlicht, wird man die genaue Größe seines Vermögens wohl auch nie erfahren. Der am häufigsten genannte und wahrscheinlichste Wert ist 30 Fantastillionen Taler. Aber wie groß ist die Zahl Fantastillion?
Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.