Skip to content

Erbfolge im Schnecken-Königreich

Gedrehtes Haus, Augen auf Hörnern und lange Raspelzunge – Schnecken sind schon für Grundschüler phantastische Lebewesen und wegen ihrer sprichwörtlichen Langsamkeit gut zu beobachten. Im Biologie-Unterricht für ältere Schülerinnen und Schüler wird das Schneckenthema vielfach unterschätzt. Dabei können Fortpflanzung, Entwicklung und maternale Vererbung am Beispiel der Schnecken anschaulich vermittelt werden.

Das Leben von Schnecken ist langweilig, immer nur Salat und Schleim? Weit gefehlt, wenn man das Verhalten von Schnirkelschnecken (Weinbergschnecken, Bänderschnecken) im Mai beobachtet. An feuchtwarmen Abenden, oft kurz vor einem Gewitter, sieht man sie paarweise zusammenkommen und in stundenlangem Liebesspiel ihre Fortpflanzung einleiten. Bei der Paarung schmiegen die Schnecken ihre Kriechsohlen aufrecht aneinander und neigen Kopf- und Halspartie seitlich links zueinander, wie zu einer zärtlichen Begrüßung. Gehäuseschnecken sind Zwitter, man nennt sie etwas poetischer auch „Hermaphroditen“, nach Hermes und Aphrodite aus der griechischen Mythologie. Bei der Partnersuche im Schneckentempo ist es vorteilhaft, wenn man nicht auch noch auf das passende Geschlecht treffen muss und aus einer Paarung gleich zwei befruchtete Partner hervorgehen können. Die Zwitterdrüse befindet sich im Eingeweidesack, geschützt vom Schneckenhaus. Hier werden zunächst Spermienzellen gebildet und in ein langes Behältnis (Spermatophore) verpackt. Männliche und weibliche Geschlechtsorgane, also Penis und Vagina, wären in der Mantelhöhle wenig funktionell untergebracht. Sie befinden sich stattdessen versteckt unter dem rechten Augenfühler am Kopfende und werden im Verlauf des Liebesspiels ausgestülpt.

Oft wird dieser Liebesakt zuvor durch einen hormonhaltigen Liebespfeil aus Kalk unterstützt. Diesmal war der römische Liebesgott Amor (bzw. sein Pfeil) namensgebend, obwohl es sich weniger um einen Pfeil handelt als vielmehr um eine scharfkantige Kalklanze. Der bei Weinbergschnecken knapp einen Zentimeter lange schleimhaltige Liebespfeil wird während des Vorspiels jeweils in den Fußmuskel des Partners gestoßen. Er enthält Hormone, die die Beweglichkeit der eigenen Spermien erhöhen. Außerdem mindern sie die Bereitschaft des Partners für weitere Paarungen. Das Schneckenpaar überträgt die Spermatophore von der eigenen männlichen Geschlechtsöffnung auf die weibliche Geschlechtsöffnung des Partners. Die empfangene Spermatophore wird aufgelöst, nur schnelle Spermien entgehen den Enzymen und gelangen in die Befruchtungstasche. Diese Auslese wird als sexuelle Selektion für besonders fitte Spermienzellen angesehen. Der Liebespfeil hat also die Konkurrenzfähigkeit der Spermien erhöht. Erst etwa einen Monat nach der Paarung bildet die Zwitterdrüse Eizellen und leitet diese zur Befruchtung ebenfalls in die Befruchtungstasche.

Paarung von Landlungenschnecken :

In Spiralen vom Ei zur Schnecke

Weinbergschnecken legen etwa 40 bis 60 befruchtete Eier in eine Erdhöhle, hier beginnen die Furchungsteilungen. Sie erfolgen spiralförmig, die Tochterzellen werden jeweils leicht nach rechts versetzt abgeschnürt. Das weitere Wachstum des Embryos verläuft asymmetrisch, die linke Mitteldarmdrüse wächst stärker als die rechte. Die winzigen schlüpfenden Minischnecken haben dadurch einen rechtsgedrehten Eingeweidesack, der durch ein noch zartes spiraliges Schneckenhaus geschützt wird. Schon in der Embryonalentwicklung ist also der genetisch fixierte Rechtsdreh sichtbar. Stofflich verantwortlich dafür ist ein Rechtsdrehfaktor (Dextralfakor D), der dominant vererbt wird und an der Spindelbildung bei der Zellteilung beteiligt ist. Fehlt in der frühesten Entwicklung dieser Rechtsdrehfaktor, gibt es keine Spiralfurchung und die Mitteldarmdrüse wächst weniger asymmetrisch (d). Es entwickelt sich eine Schnecke mit linksgedrehtem Schneckenhaus und Geschlechtsöffnungen unter dem linken Augenfühler. Der Fund eines solchen linksgedrehten Schneckenhauses ist fast so selten wie ein Lottogewinn: Unter Tausenden rechtsgedrehten Schneckenhäusern gibt es meist nur einen linksgedrehten „Schneckenkönig“. Um einen Schneckenkönig zu erkennen, braucht man ein gewisses räumliches Vorstellungsvermögen: Betrachtet man ein Schneckenhaus von oben, verläuft die Drehung von der kleinsten zur größten Windung im Uhrzeigersinn; von der Seite betrachtet, mit der Spitze nach oben, liegt die Mündung rechts von der Mittelachse.

Warum sind Schneckenkönige so selten?

Für einen dominant-rezessiven Erbgang sagen die Mendel-Vererbungsregeln in der Enkel-Generation (F2) einen statistischen 25-Prozent-Anteil von homozygot rezessiven Trägern (dd) voraus, also deutlich mehr als die tatsächliche Trefferquote. Das gilt allerdings nur, wenn sich die Partner uneingeschränkt miteinander kreuzen können. Angesichts des komplizierten Paarungsvorspiels von Schnecken wird schnell klar, dass solche Links-Unikate nur schwer einen Partner finden – sie passen bei der Paarung einfach nicht mit Rechtsgedrehten zusammen. Daher bleiben sie meist ohne Nachwuchs. Müssten Schneckenkönige in der Population dann nicht eigentlich seltener und seltener werden, bis sie ganz verschwunden sind? Oder haben sie vielleicht einen Selektionsvorteil gegenüber rechtsgedrehten Schnecken? Zu den wichtigen Schneckenverzehrern zählen Singdrosseln, die das Schneckenhaus mit dem Schnabel packen und auf einem Stein, der „Schneckenschmiede“, zerschlagen. Linksgedrehte Häuser sind möglicherweise weniger „griffig“ für sie. Das ist aber nicht die ganze Erklärung für die stabile Seltenheit von Schneckenkönigen. Tatsächlich folgt die Vererbung des D-Faktors nicht den klassischen Mendel-Regeln, sondern ist ein Beispiel für eine Vererbung über die mütterliche Linie (maternale Vererbung): Unter den (dd)-Schnecken gibt es wider Erwarten Schnecken mit einem rechtsgedrehten Haus, die problemlos mit rechtsgedrehten (DD)- und (Dd)-Schnecken Nachwuchs zeugen können. So bleibt das Allel (d) in der Schneckenpopulation erhalten. Zwar fehlt (dd)-rechtsgewundenen Schnecken das Gen für den D-Faktor, sie können ihn also nicht per Proteinbiosynthese selbst herstellen. Sie haben aber mit dem Eidotter den fertigen D-Faktor als „Mitgift“ von der Mutter (Dd) erhalten. Das ermöglicht die reguläre Spiralfurchung und damit auch das paarungsfreundliche Rechtsgehäuse einer (dd)-Schnecke. Allerdings kann sie selbst ihrem Nachwuchs den D-Faktor weder genetisch noch stofflich weitergeben. Kann der Paarungspartner diese Lücke nicht füllen, entsteht (entsprechend selten) ein Schneckenkönig. Diese maternale Vererbung ist ein Beispiel für Epigenetik, also für eine Vererbung von Merkmalen von Generation zu Generation ohne direkte Beteiligung der Erbsubstanz DNA.

Dr. Inge Kronberg


Literatur- und Linktipps:

Ulrich Kattmann (2017). Die Weinbergschnecke und ihre Verwandten (NBB junior). Magdeburg: VerlagsKG Wolf


Inge Kronberg (2019). Amor auf Kriechspur. Biologie in unserer Zeit, 49


Inge Kronberg (2019). Vom Schneckenei zum Schneckenkönig. Biologie in
unserer Zeit, 49(2)


Elisabeth Tova Bailey (2012). Das Geräusch einer Schnecke beim Essen. Zürich: Nagel & Kimche


Erstaunliches über Schnecken
www.weichtiere.at/Schnecken

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Mit Wasserstoff in eine grüne Zukunft
4. Juli, 2022
Das Pariser Klimaziel, die globale Erderwärmung auf 1,5 Grad Celsius zu beschränken, könnte noch erreicht werden. Aber es ist eine Herkulesaufgabe, für die wir den Ausbau der erneuerbaren Energien vervielfachen müssen. Und wir brauchen sogenannten grünen Wasserstoff, der mithilfe von regenerativem Strom hergestellt wird. Die Technologie spielt eine Schlüsselrolle auf dem Weg zur Klimaneutralität, die wir weltweit bis Mitte des Jahrhunderts erreichen wollen.
Der menschliche Faktor oder wie berufliches   Miteinander gelingen kann
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
Kollision der Giganten
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
Computer: Zufälle gibt es nicht
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
Schwarmverhalten – lieber gemeinsam als einsam
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
Batterien – Speicher der Zukunft?
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
Wie unsere Gedanken entstehen und warum wir sie lesen können
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.
Neues aus der Milchstraße
28. März, 2022
In den vergangenen Jahren hat sich das Verständnis von der Struktur und Entwicklung der Milchstraße enorm erweitert und teilweise gewandelt. Entdeckt wurden darin neue Spiralarme und gigantische Gebilde, weiträumige Schwingungen sowie uralte Reste kannibalisierter Zwerggalaxien.
Kann der Hund Analysis?
14. März, 2022
Wenn ein Hund nicht auf dem kürzesten (geraden), sondern auf dem zeitoptimalen (geknickten) Weg ins Wasser springt, um den Ball zu apportieren, löst er ein Minimierungsproblem. Das ist immerhin so kompliziert, dass es als Klausuraufgabe im zweiten Semester Analysis taugt. Und da kommt Timothy Pennings, Mathematikprofessor an einer kleinen Universität im ländlichen Michigan, und behauptet, sein Hund Elvis könne das auch!
Vom Feld bis auf den Teller: Was sind die besten Zutaten für kulinarischen Klimaschutz?
4. März, 2022
Unsere Ernährung ist ein echtes Schwergewicht auf der Klimabilanz. Mit durchschnittlich 1,7 Tonnen CO2-Äquivalenten pro Kopf und Jahr schlägt diese beim CO2-Fußabdruck einer und eines jeden Deutschen zu Buche. Zum Vergleich: In Indien verursacht ein Mensch für seinen gesamten Lebensstil im Durchschnitt etwa 1,7 Tonnen CO2-Emissionen. Höchste Zeit also, unsere Ernährungsgewohnheiten auf Klimadiät zu setzen.
AlphaFold – ein Algorithmus für das Protein-Origami
22. Februar, 2022
Ob Einzeller oder Vielzeller, die Lebensfunktionen in der Zelle basieren auf winzig kleinen Grundbausteinen, den Proteinen. Wie einzelne Proteine genau aussehen, wird in der Strukturbiologie erforscht. Dort werden die 3-D-Strukturen von Proteinen sichtbar gemacht und aus ihrem Aufbau zelluläre Funktionen und Wirkmechanismen abgeleitet. Mit dem lernfähigen KI-System AlphaFold 2.0 hat die Strukturbiologie nun neue Unterstützung.