Skip to content

Dornröschen und die Wahrscheinlichkeitstheorie

Ein fiktives Experiment beleuchtet die vertrackte Beziehung zwischen objektiven und subjektiven Wahrscheinlichkeiten.

Vergessen Sie das romantische Märchen, in dem der Prinz das schöne Dornröschen mit einem Kuss aus hundertjährigem Schlaf erweckt. In der aktuellen Kontroverse um „sleeping beauty“ (so der englische Titel des Grimm’schen Märchens) geht es um eine Versuchsperson in einem merkwürdigen Gedankenexperiment.

Das Experiment

Am Sonntagabend geht Dornröschen zu Bett. Vor ihr verborgen wirft der Versuchsleiter eine faire Münze. Ist das Ergebnis „Kopf“, so weckt er sie am Montag, stellt ihr eine Frage und verabreicht ihr eine Droge, die sie nicht nur wieder in den Schlaf versetzt, sondern auch ihre Erinnerung an die Erweckung samt Befragung auslöscht. Fällt die Münze so, dass „Zahl“ oben liegt, führt er das Protokoll aus Aufwecken, Befragen und Löschen der Erinnerung am Montag und am Dienstag durch. Mit dem Aufwachen am Mittwoch ist das Experiment beendet. Das Vertrackte an der Geschichte ist die Frage, die der Versuchsleiter ihr während der kurzen Wachphasen stellt: „Mit welcher Wahrscheinlichkeit, glaubst du, zeigt die Münze Kopf?“

Es gibt nämlich zwei Antworten. Die erste Antwort lautet: „Selbstverständlich ein halb!“ Dornröschen – die man sich als voll informierte und rationale Denkerin vorstellen muss – hat nämlich vor Beginn des Experiments erfahren, dass die Münze fair ist. Also war ihre subjektive Wahrscheinlichkeit für „Kopf“ am Sonntag noch gleich 1⁄2, und durch das Aufwecken hat sie keine neue Information erworben, die das revidieren könnte. Schließlich hat sie schon am Sonntag gewusst, dass sie geweckt werden würde, und auch das hat an ihrer Einschätzung nichts geändert.

Die zweite Antwort aber lautet: „Selbstverständlichein drittel!“ Im Moment ihrer Erweckung befindet sich Dornröschen, wie sie weiß, nämlich in einem von drei Szenarien: Es ist Montag und die Münze zeigt Kopf, kurz (M, K); Montag und Zahl (M, Z); Dienstag und Zahl (D, Z).

Die drei Szenarien sind für sie ununterscheidbar, denn sie bekommt weder einen Kalender noch die Münze zu sehen. Also bleibt ihr nichts anderes übrig, als jedem Ereignis die gleiche Wahrscheinlichkeit zuzuweisen. In nur einem der drei Szenarien zeigt die Münze Kopf, also …

Konzepte der Wahrscheinlichkeit

Wie kann es sein, dass es zu einer einfachen mathematischen Fragestellung zwei widersprechende Antworten gibt, zwischen denen man nicht durch schlichtes Nachrechnen entscheiden kann? Antwort: Das Problem ist nicht in erster Linie ein mathematisches. Aber das merkt man erst nach einer Weile. Das Konzept der Wahrscheinlichkeit im Allgemeinen und das der „subjektiven Wahrscheinlichkeit“ (in Dornröschens Kopf) im Besonderen sind problematischer, als es zunächst den Anschein hat.

In der Schulmathematik sind Wahrscheinlichkeiten in der Regel naturgegeben: Die Münze ist fair, und es wird nicht gefragt, wie man zu dieser Aussage kommt, sondern nur, was aus ihr folgt. Die Experimentalphysiker neigen dazu, Wahrscheinlichkeit als den Grenzwert der relativen Häufigkeit bei oftmaliger Wiederholung des Experiments zu verstehen (die „frequentistische“ Interpretation). Und Dornröschens Situation wird am ehesten durch die Bayes’sche Interpretation beschrieben, nach der Wahrscheinlichkeiten die unvollständige Kenntnis des Subjekts über das Objekt des Interesses widerspiegeln. In dieser Interpretation ist es auch sinnvoll, vergangenen Ereignissen Wahrscheinlichkeiten (ungleich 0 oder 1) zuzuschreiben. Subjektive Wahrscheinlichkeiten ändern sich mit jeder neuen Erkenntnis über das Objekt; und wenn alles mit rechten Dingen zugeht, streben sie mit jeder neuen Beobachtung (man denke an einen wiederholten Münzwurf) ganz frequentistisch gegen die „echten“ Wahrscheinlichkeiten. Was soll sich nun das arme Dornröschen denken?

In der Schule wäre jetzt ein Entscheidungsbaum angesagt. Zunächst fällt die Münze. Der linke Zweig „Kopf“ hat eine Wahrscheinlichkeit von 1⁄2 für sich und ist damit erledigt. An den rechten Zweig („Zahl“) muss man eine weitere Astgabel anhängen, deren Zweige heißen „Montag“ und „Dienstag“ und sind ebenfalls gleich wahrscheinlich. Also sind die Wahrscheinlichkeiten 1⁄2 für (M, K) und jeweils 1⁄4 für (M, Z) und (D, Z), woraus für Dornröschen die Antwort 1⁄2 folgen würde. Das klingt einleuchtend, ist aber falsch. Es gibt zwar einen Zufallsprozess, der darüber entscheidet, ob Kopf oder Zahl fällt, aber keinen, der darüber entscheidet, ob heute Montag oder Dienstag ist. Das Argument wirft objektive Wahrscheinlichkeiten (für den Münzwurf) und subjektive (nur in Dornröschens Kopf sind Montag und Dienstag gleich wahrscheinlich) durcheinander und liefert deswegen für keine der beiden eine brauchbare Aussage.

Für die Vertreter der Antwort 1⁄3 (die „Drittler“) spricht auch ein Argument der Wirtschaftswissenschaftler: Dornröschen ist eine rationale Nutzenmaximiererin. Jedes Mal, wenn sie aufwacht, wird ihr angeboten, auf Kopf oder Zahl zu wetten. Die richtige Einschätzung ihrer subjektiven Wahrscheinlichkeiten ist diejenige, die ihre erwartete Auszahlung maximiert. Mit diesem Argument findet das berüchtigte Ziegenproblem („Monty Hall problem“) eine allgemein anerkannte Lösung.

Hypothetisches Vergessen und subjektive Wahrscheinlichkeiten

Gleichwohl bleibt ein Unbehagen. Immerhin müsste Dornröschen eine Wahrscheinlichkeitsaussage treffen, die – wie sie weiß – objektiv falsch ist. Die „Halbierer“ interpretieren die Dornröschenfrage als die Frage nach der „objektiven“ Wahrscheinlichkeit. Die „Drittler“ verstehen sie laut dem Computerexperten Roland Stuckard so: „Mit welcher Wahrscheinlichkeit, glaubst du, erlebst du gerade eine Erweckung innerhalb des durch den Münzwurf ‚Kopf‘ induzierten Zweigs des Experiments?“

Und es bleibt das Argument der „Halbierer“, dass Dornröschen zwischen dem Einschlafen am Sonntag und dem Erwecken am Montag keine Information erworben haben kann, die ihre subjektiven Wahrscheinlichkeiten revidieren könnte. Was einem nur mühsam in den Kopf geht: Dieses Argument ist falsch, allerdings arbeitet das richtige mit dem umgekehrten Vorzeichen. Dornröschen erwirbt Information nicht, sondern verliert sie. Beim Aufwecken am Montag weiß sie nämlich nicht mehr, ob sie nicht schon einmal geweckt worden ist, in welchem Falle es schon Dienstag wäre. Aber beim Erwecken am Montag hat sie die Vergessensdroge noch gar nicht genommen, also auch noch nichts vergessen! Richtig, aber das hilft nicht. Sie muss damit rechnen, dass sie vergessen hat. Also ändert nicht nur echtes, sondern bereits hypothetisches Vergessen die subjektiven Wahrscheinlichkeiten – ein in der Tat gewöhnungsbedürftiger Gedanke.

Dr. Christoph Pöppe


Über den Autor: 

Dr. Christoph Pöppe, Jahrgang 1953, hat Mathematik und Physik studiert. Von 1989 bis 2018 war er (der einzige) Redakteur für Mathematik und verwandte Gebiete bei der Zeitschrift „Spektrum der Wissenschaft“.


Literatur- und Linktipps: 

Adam Elga: Self-locating belief and the Sleeping Beauty problem. www.t1p.de/dornroeschen1
David Lewis: Sleeping Beauty: reply to Elga. www.t1p.de/dornroeschen2
Pradeep Mutalik: Sleeping Beauty’s Necker Cube Dilemma. www.t1p.de/mutalik1
Pete Newbon: #MeToo, Sleeping Beauty and the often controversial history of fairy tales, 17. Januar 2018. www.t1p.de/smzf
Christoph Pöppe: Dornröschen und die Wahrscheinlichkeitsrechnung. Spektrum der Wissenschaft 11/2019, S. 80–85

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Illustration von Neutronensternen
18. März, 2025
Mit Gravitationswellen lassen sich die verborgenen Seiten des Alls belauschen. Die meisten bislang entdeckten Quellen sind kollidierende Schwarze Löcher.
Erschöpfte Frau greift sich an die Stirn
3. März, 2025
Lampenfieber vor einer Präsentation, Prüfungsangst oder einfach ein stressiger Schultag – Stress gehört für viele Schüler:innen leider zum Schulalltag, ebenso wie für Lehrkräfte. Doch zu viel davon kann die Konzentration und das Wohlbefinden beeinträchtigen. Genau hier kommt der Vagusnerv ins Spiel: Wie kein anderer Nerv hat der längste Nerv unseres Körpers, der Vagusnerv, und das damit verbundene parasympathische Nervensystem, in den letzten Jahren höchstes Interesse bei gesundheitsorientierten Menschen gewonnen. Kein Wunder, ist er doch DAS zentrale Kommunikationsorgan zwischen dem Gehirn und den Körperorganen. Das Beste: Er lässt sich aktivieren.
Zeppelin in der Abendsonne
25. Februar, 2025
Von Radaröfen haben Sie nie gehört? Auch Hydrobergbau ist Ihnen kein Begriff, ebenso wenig wie die Kohlenstaub-Lokomotive? Selbst beim Itera-Plastikfahrrad oder beim Elektropflug glimmt kein Erinnerungsfunke auf? Kein Grund zur Sorge: Fast niemand erinnert sich mehr an diese Dinge, denn es sind „gescheiterte Innovationen“, deren Existenz über kurz oder lang von der Welt vergessen wurde. In Erinnerung sind bestenfalls die angesichts verlorener Subventionsmillionen spektakuläreren Fälle, etwa die zumindest vorerst gefloppte Magnetschwebebahn Transrapid oder der 2002 wohl endgültig gescheiterte Frachtzeppelin Cargolifter, in dessen Halle sich heute immerhin vom Urlaub in den Tropen träumen lässt.
Forscherin mit Handschuhen bearbeitet eine grüne Salatpflanze im Labor mit einer Pinzette
20. Februar, 2025
Die Klimakrise verschärft sich rasant und stellt schon jetzt weltweit Menschen vor existenzielle Probleme, auch im Hinblick auf Landwirtschaft und Ernährung. Die Landwirtschaft leidet unter den Folgen der Klimakrise und muss sich an die neuen Extremwettersituationen anpassen. Zudem erhöhen das massive Artensterben und andere ökologische Folgen menschlichen Handelns zunehmend den Druck, bisherige ökonomische und soziale Praktiken zu hinterfragen und zu verändern. Ein aktuell kontrovers diskutierter Ansatz ist die Neue Gentechnik (NGT).
viele Euro-Münzen auf einem Haufen
20. Februar, 2025
Der reichste Mann der Welt ist der Entenhausener Erpel Dagobert Duck. Auch der zweit-reichste Mann ist ein Erpel. Er heißt Mac Moneysac und lebt in Simililand in Südafrika. Erst auf Platz drei kommt mit dem Amerikaner Elon Musk ein Mensch. Doch wie reich Dagobert Duck ist, darüber gibt es unterschiedliche, zum Teil stark widersprüchliche Angaben, und da er, genau wie Donald Trump, seine Steuererklärungen nicht veröffentlicht, wird man die genaue Größe seines Vermögens wohl auch nie erfahren. Der am häufigsten genannte und wahrscheinlichste Wert ist 30 Fantastillionen Taler. Aber wie groß ist die Zahl Fantastillion?
Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.
Mädchen löst eine Matheaufgabe
22. Januar, 2025
Trotz vielfältiger Maßnahmen in den Bereichen Gendersensibilisierung, Geschlechtergerechtigkeit und Chancengleichheit sind Frauen in Deutschland in MINT-Berufen im Schnitt immer noch unterrepräsentiert. Zwar gibt es mittlerweile Fachgebiete mit paritätischer Verteilung (etwa Biologie, Medizin), aber auch viele Fachgebiete mit weiterhin extrem niedrigen Frauenanteilen (beispielsweise Physik, Ingenieurswissenschaften). Das zeigt, wie wichtig es ist, eine gendersensible MINT-Bildung zu fördern, die Mädchen und junge Frauen gezielt ermutigt, sich in bisher männerdominierten Bereichen auszuprobieren und langfristig Fuß zu fassen.
Bild eines Schülers mit VR-Brille
16. Januar, 2025
Kann die Zukunft uns verzaubern? Oft blicken wir mit gemischten Gefühlen auf das, was vor uns liegt. Doch Trend- und Zukunftsforscher wie Matthias Horx ermutigen uns, die Möglichkeiten von morgen nicht nur als mitunter Angst einflößende Herausforderung, sondern auch als vielversprechende Chance zu sehen. Sein Buch Der Zauber der Zukunft lädt dazu ein, sich mit einem positiven Blick auf Veränderungen einzulassen – ein Gedanke, der gerade für Lehrkräfte spannend ist. Doch wie können wir diese Perspektive auch in die Klassenzimmer bringen?
Mit dem DESI-Instrument in Arizona wird gegenwärtig eine dreidimensionale Karte der Position und Bewegung vieler Millionen Galaxien erstellt
27. November, 2024
Der Erkenntnisfortschritt der modernen Kosmologie verlief in den letzten zwei, drei Jahrzehnten rasant. Und doch sind die Konsequenzen äußerst kurios. Noch tappt die Wissenschaft vom Universum buchstäblich im Dunkeln, denn der Hauptbestandteil des Alls ist rätselhaft.
Strahlend heller Sonnenschein am klaren blauen Himmel mit ein paar zarten, dünnen Wolken im Hintergrund.
25. November, 2024
Wie fängt man Sonnenlicht am besten ein? Das ist nicht nur bei der Aufstellung von Photovoltaikanlagen wichtig, sondern auch für die Sonnenenergiewandler der Pflanzen, also bei ihren Blättern und deren Verzweigung und Ausrichtung. Es ist nicht vorteilhaft, wenn sie sich gegenseitig im Wege stehen und beschatten. Die Blattstellung folgt einem geometrischen Muster, das, mathematisch betrachtet, mit Spiralen, Selbstähnlichkeit, Fibonacci-Zahlen und dem Goldenen Winkel zu tun hat.
Mehrere Hände, die in einem Klassenzimmer vor einer Tafel mit mathematischen Formeln in die Luft gehoben sind
15. November, 2024
Bildungsdiskussionen in Deutschland sind immer auf Messers Schneide: Auf der einen Seite müssen wir darüber sprechen, was wir eigentlich erreichen wollen. Auf der anderen Seite soll es nicht in langwierige Diskussionen über abstrakte Begriffe abdriften. Was vonnöten ist, ist ein Kern, der die Diskussion bestimmt. Dieser liegt darin, warum wir noch Schulen haben. Sie sind Orte des Lernens – oder sollten es sein. Wir brauchen einen Gegenentwurf zu dem traditionellen Schulverständnis.
Energiefresser Internet
28. Oktober, 2024
Das Internet ist zu einem unverzichtbaren Teil unseres Alltags geworden. Wir alle nutzen es, wenn auch zu ganz unterschiedlichen Anteilen, zur Kommunikation, Unterhaltung, Arbeit und Bildung. Doch kaum jemand macht sich Gedanken darüber, wie viel Energie für all diese Dienste und Daten im Netz aufgewendet werden muss.