Skip to content

Geheime Botschaften im Licht – Quantenkryptografie

Die Quantenkryptografie bietet die Chance, die Kommunikation der Zukunft abhörsicher zu gestalten. Im Schülerlabor PhotonLab am Max-Planck-Institut für Quantenoptik haben Schülerinnen und Schüler die Möglichkeit, sich mit der Technologie in einem Analogexperiment vertraut zu machen.

Wer etwas im Vertrauen mitzuteilen hat, der möchte sicher sein, dass kein Dritter ungebeten mithört. Das ist gar nicht so einfach, selbst Wände oder vor allem Datenautobahnen haben manchmal große Ohren. Bis heute gibt es keine Kommunikationstechnologie, die wirklich zu 100 Prozent abhörsicher ist.
Gut, dass es die Quantenphysik gibt. Denn im Gegensatz zur klassischen Physik ist es in dieser Welt niemals möglich, den Zustand eines Quantenteilchens perfekt zu kopieren. Erst 1982 wurde dieses quantenphysikalische Grundprinzip, das „no-­cloning-­theorem“ bewiesen. Das hat zur Folge: Wer ein Quantenteilchen losschickt und es mit einer Botschaft anreichert, kann sicher sein, dass der Empfänger die Informationen nur dann zuverlässig lesen kann, wenn er im Experiment die richtigen Einstellungen gewählt hat. Sollte eine dritte Person die Botschaft abhören, könnte sie das empfangene Photon nicht klonen und weiterschicken – und würde als Spion auffliegen.

Verschlüsselung mit Hilfe von Quanten

An der Verschlüsselung von Botschaften mit Hilfe von Quanten arbeiten weltweit zahlreiche Forschungsgruppen. In der Quan­ten­kryp­to­gra­fie wurden bisher schon beachtliche Erfolge erzielt. Ein Team um Prof. Harald Weinfurter am Max-­Planck-­Institut für Quantenoptik (MPQ) und der Ludwig-­Maximilians-­Universität München (LMU) gehört dabei zu den erfolgreichsten Quantenkryptografen. Daher besitzen Schülerinnen und Schüler beim Besuch des Schülerlabors PhotonLab am MPQ die Gelegenheit, sich in einem Experiment eigenständig mit der Quantenkryptografie vertraut zu machen.

Grundprinzip

Das Prinzip ist folgendes: Um eine digitale Nachricht abhörsicher zu übertragen, muss diese Nachricht – bestehend aus einer bestimmten Folge von Nullen und Einsen mit einem gleichlangen Schlüssel – ebenfalls bestehend aus einer zufälligen Folge von Nullen und Einsen – verschlüsselt werden. Wenn Sender und Empfänger den gleichen Schlüssel haben, kann die Nachricht ver- bzw. entschlüsselt werden. Selbst wenn die Nachricht dann von einem Lauscher abgefangen wird, kann dieser wegen der Zufälligkeit des Schlüssels nichts damit anfangen.
Die Aufgabe ist also, einen zufälligen digitalen Schlüssel zu kreieren, der nur dem Sender und dem Empfänger zur Verfügung steht. Die Bits wie Null und Eins werden in der Quantenkryptografie einzelnen Photonen aufgeprägt, weil diese sich gut durch Fasern oder in der Luft mithilfe von Teleskopen übertragen und messen lassen. Die Information wird auf den Lichtquanten durch ihre Polarisation, d. h. die „Schwingungsrichtung“ der elektromagnetischen Welle, kodiert. Ein Spion, der das kodierte Photon heimlich „abhören“, also seine Polarisationsrichtung herausfinden will, kann es nicht einfach abzweigen und messen, denn dann würde es nie zum Empfänger gelangen. Auch das Photon zu messen oder zu kopieren ist nicht möglich, denn hier macht die Quantenphysik einen Strich durch die Rechnung. Die Quantengesetze erlauben es nicht, Messungen an Quantenzuständen durchzuführen, ohne diese zu beeinflussen. Dieselben Gesetze verbieten es dem Spion, eine identische Kopie des Photons zu erzeugen und die Messungen an dieser Kopie durchzuführen, um unentdeckt zu bleiben. Immer wenn der Spion versucht, den Schlüssel abzuhören, ändert er also zwangsläufig den Quantenzustand des Teilchens und würde durch einfache Tests entdeckt.

Experiment im PhotonLab

Im Schülerlabor PhotonLab gibt es dazu ein Analogie-Experiment. Das System bietet die Firma Thorlabs kommerziell an. Mit der Technik übertragen die Schüler Informationen (0 oder 1) über polarisiertes Laserlicht. Der Laser im Versuchsaufbau (Alice) sendet linear polarisiertes Licht aus. Das Licht verlässt den Laser also nur in einer Polarisationsrichtung und kann nun von sogenannten Polarisationsdrehern um einen beliebigen Winkel gedreht werden. Im Versuch wird -45° bzw. 0° polarisiertes Licht für das Bit 0 und 45° bzw. 90° für das Bit 1 verwendet. 0° und 90° werden der Basis + zugeordnet und -45° und 45° der Basis x. Alice verschickt nun die zufällig gewählten Bits 0 oder 1 über die Polarisation des Lichts d. h. zufälliges Einstellen des Polarisationsdrehers an den Empfänger (Bob). Bob hat auch einen Polarisationsdreher und wählt damit zufällig die Basis (+ oder x) aus, in der er misst. Wenn beide Basen – zufällig – übereinstimmen, wird Bob als Messergebnis genau die von Alice eingestellte Polarisation erhalten und damit auch den entsprechenden Bitwert. Bei welchen Bits die Basen übereinstimmen, kann öffentlich geklärt werden. Nur die Bits, die so empfangen wurden ergeben den Schlüssel. Nun betritt der Spion (Eve) die Bühne. Im einfachsten Fall besteht Eve aus einer Empfangseinheit (entsprechend Bob) und einer Sendeeinheit (entsprechend Alice). Eve muss sich nun entscheiden, in welcher Basis (+ oder x) sie das ankommende Photon misst. Sie wird dann gerade das beobachtete Ergebnis (z. B. 90°) an Bob weiterschicken. Hat sie die falsche Basis gewählt, so ist ihr Ergebnis zufällig und unabhängig von der Einstellung bei Alice. Das Ergebnis bei Bob wird dementsprechend ebenfalls zufällig sein, auch wenn er in der gleichen Basis wie Alice misst. Wenn Bob und Alice ihre Basen abgleichen, müssen sie, um Eve zu entdecken, daher auch einige Bits vergleichen. Treten bei einer Testsequenz Unterschiede auf (z. B. Alice sendet 1 in Basis x, Bob empfängt in Basis x, erhält aber 0), dann ist ein Lauscher in der Leitung!

Quantenkryptografie in der Forschung

Das Labor längst verlassen hat die Quantenkryptografie in der Technologie-Forschung. Im Jahr 2013 ist es dem Team um Harald Weinfurter und Sebastian Nauerth von der Fakultät für Physik der LMU in Zusammenarbeit mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) gelungen, einen Quantenschlüssel zwischen einem Flugzeug und einer Bodenstation 20 Kilometer durch die Atmo­sphä­re zu übertragen. Damit wurde erstmals eine Verbindung per Quantenkryptografie mit einem sich schnell bewegenden Objekt hergestellt.
Zwischen der Empfängerstation am Boden und dem Sender auf dem Flugzeug wurden Lichtsignale gesendet. Bei der Übertragung von einem mobilen Sender war die besondere Herausforderung, die Lichtteilchen trotz der Vibrationen im Flugzeug zielgenau zum Teleskop zu bringen. „Mit Hilfe von schnell beweglichen Spiegeln konnte auch während des Fluges eine Zielgenauigkeit von weniger als drei Meter über 20 Kilometer Entfernung erreicht werden“, berichtet Florian Moll, Projektleiter am DLR-Institut für Kommunikation und Navigation. Mit dieser Präzision könnte Wilhem Tell den Apfel noch auf eine Entfernung von 500 Metern treffen. Inzwischen ist die Entwicklung schon weiter fortgeschritten, im letzten Jahr konnte ein Schlüssel mit einem speziellen Satelliten ausgetauscht werden und so auch zwischen weit voneinander entfernten Bodenstation sicher Nachrichten ausgetauscht werden.
Für die Zukunft müssen die Systeme vor allem verkleinert, für Smartphones oder PC’s angepasst und die Bedienbarkeit verbessert werden. Aber Achtung, selbst wenn man den Übertragungsweg der Daten dadurch komplett abhörsicher gestalten könnte, blieben als Angriffspunkte für Hacker immer noch die Geräte und die Nutzer selber.

Thorsten Naeser und Dr. Silke Stähler-Schöpf

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Planet Nine
13. Januar, 2023
Jenseits des Neptuns wurden Tausende Himmelskörper gefunden, wo bis vor 30 Jahren nur der neunte Planet Pluto beheimatet schien. Der wiederum ist längst kein Planet mehr – schauen wir uns die Revolutionen am Rande des Sonnensystems einmal genauer an.
Jelly
16. Dezember, 2022
Wenn man von der Kohlenstoffsenke hört, denkt man zunächst an Wälder, Moore oder gar an die Gletscher, doch ein wichtiger Kontributor ist der Ozean, im Speziellen die Tiefsee. Die Tiefsee kann man sich wie eine Wüste vorstellen. Es ist ein Ort der Extreme, mit hoher Salinität, niedrigen Temperaturen und enormem Druck. Doch der eigentliche limitierende Faktor für organisches Leben in der Tiefsee ist die Nahrungsverfügbarkeit, die ab 1.000 Meter Tiefe nahezu verschwindend gering ist. Dementsprechend sind Tiefseeorganismen auf jede Nahrungsquelle angewiesen. Und genau hier kommen Quallen ins Spiel.
Ahnenforschung_Headerbild_1920x1080
9. Dezember, 2022
Nach der Bibel waren die ersten beiden Menschen Adam und Eva, und sie sollen vor etwa 6.000 Jahren gelebt haben. Doch kann das sein?
Klima_titel
18. November, 2022
Jeder dritte Mensch ist aufgrund des Klimawandels und der damit einhergehenden Bedrohung der Lebensgrundlage ausgesprochen verwundbar – das zeigt der Weltklimarat IPCC in seinem neuesten Sachstandsbericht zum Thema „Klimawandel 2022: Folgen, Anpassung und Verwundbarkeit“. Was das für unsere Zukunft bedeutet und warum das oberste Ziel nicht unbedingt lautet, Migration zu verhindern, klärt dieser Beitrag.
Straßenverkehr
26. Oktober, 2022
Über viele Jahrzehnte war der Verkehr, insbesondere der auf der Straße, ein Thema, das zwar ständig auf der Tagesordnung stand, aber nicht als „kritisch“ angesehen wurde. Die individuelle Mobilität und die dazugehörigen Angebote wurden als selbstverständlich eingestuft. Natürlich gab es auch mal Einschränkungen, man denke nur an die beiden Ölkrisen in den 1970er-Jahren, die zu deutlichen Rezessionen führten. Die Bevölkerung trug die Maßnahmen mit und es trat nach einiger Zeit wieder Entspannung ein. Doch wie sieht das heute aus?
MZ-02-22_Berufliches-Miteinander
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
MZ-02-22_Beitragsbild_Milchstraße
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
MZ-2022-02_Beitragsbild_Computer
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
MZ_2022_01_Beitragsbild_Schwarmverhalten
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
MZ-01-22_Beitragsbild_Batterien-Speicher-der-Zukunft_20220505
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
MZ_04_21_Gedanken_Beitragsbild
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.
MZ-04-21_Beitragsbild_Milchstraße
28. März, 2022
In den vergangenen Jahren hat sich das Verständnis von der Struktur und Entwicklung der Milchstraße enorm erweitert und teilweise gewandelt. Entdeckt wurden darin neue Spiralarme und gigantische Gebilde, weiträumige Schwingungen sowie uralte Reste kannibalisierter Zwerggalaxien.