Skip to content

Die Entdeckung der Gravitationswellen

Am 14. September 2015 erschien auf einem Computermonitor in Hannover eine automatisch verschickte E-Mail. Sie stammte vom Detektorsystem LIGO in den USA und enthielt eine wissenschaftliche Sensation: Ausgeklügelte Algorithmen hatten das erste jemals direkt gemessene Signal einer Gravitationswelle erfasst! Das Ereignis sollte unter der Bezeichnung GW150914 in die Geschichte der Physik eingehen und schließlich 2017 mit dem Nobelpreis ausgezeichnet werden.

Nachdem anfängliche Zweifel an der Echtheit des Signals schnell ausgeräumt werden konnten, war klar, dass diese Entdeckung nobelpreiswürdig war. Der Nachweis ist eine späte Genugtuung für Albert Einstein. Dieser hatte bereits vor über 100 Jahren auf rein theoretischer Basis nachgewiesen, dass Gravitationswellen immer dann entstehen, wenn Massen beschleunigt werden.

Die geheimnisvollen Wellen sind letztendlich Schwingungen der Raumzeit, die sich mit Lichtgeschwindigkeit im Universum ausbreiten. Durchläuft eine Gravitationswelle einen bestimmten Raumbereich, dann ändert sich dort der Abstand zwischen zwei Punkten im Raum. Diese Abstandsänderungen sind jedoch extrem gering. Um überhaupt messbare Signale zu erzeugen, sind Ereignisse von kosmischen Dimensionen erforderlich. Ein klassisches Beispiel für eine starke Gravitationswellenquelle sind zwei zusammenstürzende Schwarze Löcher.

Beim GW150914-Signal waren zwei Schwarze Löcher beteiligt, die in einer Entfernung von 1,3 Milliarden Lichtjahren miteinander verschmolzen. Aus den beiden Objekten mit 36 beziehungsweise 29 Sonnenmassen entstand ein neues Schwarzes Loch mit 63-facher Sonnenmasse. Daraus ergibt sich, dass innerhalb von Sekundenbruchteilen drei Sonnenmassen in reine Energie umgewandelt wurden.

Rieseninterferometer bringen den Durchbruch

Lange wurde bezweifelt, dass Gravitationswellen nachweisbar wären. Selbst Albert Einstein war der Meinung, dass die Raumzeitverwerfungen so minimal seien, dass man sie niemals direkt messen könne. Gigantische Interferometer schafften nun jedoch das scheinbar Unmögliche. In diesen Detektoren wird ein hochintensiver Laserstrahl aufgespalten, der jeweils zwei vier Kilometer lange Vakuumröhren durch­läuft. Diese bilden einen Winkel von 90 Grad und somit eine hochempfindliche Gravitationswellenantenne. Am Ende der Interferometerarme reflektieren spezielle, extrem verlustarme Superspiegel das Licht zurück auf einen Photodetektor. Die Anlage wird so justiert, dass sich die beiden Laserstrahlen im Ruhezustand am Detektionspunkt exakt auslöschen. Man spricht hier auch von „destruktiver Inter­ferenz“. Läuft jedoch eine Gravitations­welle durch das Interferometer, verändert sich die Länge der Strecken, die die beiden Teilstrahlen durchlaufen. Letztendlich sind es unvorstellbar geringe Wegunterschiede, die gemessen werden. Die auftretenden Längenänderungen sind so extrem klein, dass die Messtechnik in jeder Hinsicht bis an die äußerste Grenze des Machbaren getrieben werden muss.

Ein einfaches Beispiel: Die Strecke zwischen Sonne und Erde beträgt etwa 150 Millionen Kilometer. Beim Durchlaufen der Gravitationswelle vom 14. September 2015 änderte sich diese Distanz nicht einmal um den Durchmesser eines Wasserstoffatoms (Größenordnung 10-12 m). Die Längenänderung liegt also im Bereich von 1:10-21. In Worten: eins zu einer Trilliarde!

Mit diesem Ziel vor Augen wurde der Bau von Laser-Interferometern begonnen. Unter dem Namen Laser Interferometer Gravitational-Wave Observatory, oder kurz LIGO, entstand in Hanford im US-Bundesstaat Washington, und in Livingston (Louisiana) jeweils ein Gravitationswellen­observatorium.

 

LIGO_measurement_of_gravitational_waves-cmyk
Quelle: Von B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) | CC BY 3.0

Der lange Weg zum Erfolg

Die Entdeckung der Gravitationswellen ist eine lange, hochinteressante und abwechslungsreiche Geschichte. Über mehr als 50 Jahre war der Weg zum Gravitationswellennachweis vielschichtig, steinig und von Misserfolgen übersät. Von einfachen Irrtümern, Messfehlern, der fehlerhaften Interpretation von Daten bis hin zu Nobelpreisträumen, die innerhalb von Tagen und Wochen zu Staub zerfielen, wurde alles geboten.

Im September 2015 wurde jedoch das in der Abbildung dargestellte Signal aufgespürt. In der linken Spalte der Abbildung sind die Ergebnisse des Detektors in Hanford, in der rechten die aus Livingston zu sehen. In der oberen linken Graphik zeigt eine rote Kurve einen Signalausschnitt aus Hanford. Hier ist die relative Längen­änderung der Messstrecke in ihrem Zeit­ver­lauf dargestellt. Die zugehörige Zeit­ach­se ist ganz unten im Bild angegeben. Zunächst erkennt man im Signal nur das Hintergrundrauschen des Detektors. Dann aber wird ein zunehmend deutlicher Wellenzug sichtbar. Die Signalamplitude nimmt zu, die Frequenz wird dabei immer höher. Schließlich bricht das Signal relativ schnell ab.

Die Messwerte aus Livingston sind rechts daneben in blau dargestellt. Zum Vergleich wurde hier auch noch das angepasste Hanford-Signal in hellerem orange unterlegt. Unter den Originalsignalen folgen numerische Simulationen. Diese wurden auf Basis der Allgemeinen Re­la­ti­vi­täts­theo­rie erstellt. Die in den ursprünglichen Farben der Messsignale dargestellten Resultate der relativistischen Simulationen sind dabei zusätzlich mit grauen Signal­rekon­struk­tionen hinterlegt. Dabei wurde mit jeweils unterschiedlichen mathematischen Verfahren versucht, die Simulationsergebnisse optimal an den gemessenen Wellenzug anzupassen. Darunter folgen die Signalformen, die sich ergeben, wenn man die simulierten Wellenformen von den Ori­ginalsignalen subtrahiert. So wird demonstriert, dass in diesem Falle nur noch das statistische Hintergrundrauschen erkennbar ist.

Im untersten Teil des Bildes ist die Signalfrequenz gegen den Zeitverlauf aufgetragen. Die Farbe zeigt die zugehörige Amplitude des Signals an, von dunklem Blau für 0 Prozent bis zu hellem Gelb für 100 Prozent. So ist das Ereignis am deutlichsten vom Rauschuntergrund zu unterscheiden. Zudem erkennt man so, dass das Maximum des Signals bei einer Frequenz von 130 Hz erreicht wurde.

Das Signal war so deutlich ausgeprägt, dass man es mit bloßem Auge im Daten­strom des Interferometers hätte erkennen können. Ein geschultes Auge könnte bereits im unverarbeiteten Messsignal sehen, dass der Fingerabdruck von zwei verschmelzenden Schwarzen Löchern eingefangen wurde. Am 3. Oktober 2017 wurde bekannt gegeben, dass für diese Entdeckung der Nobelpreis für Physik verliehen wird.

Ein neues Fenster zum Kosmos: Gravitationswellenastronomie

Bis zum Jahre 2015 standen der Wissenschaft nur elektromagnetische Wellen zur Erforschung des Universums zur Verfügung. Mit den Gravitationswellen-­Detektoren hat sich ein neues Fenster zum Kosmos aufgetan. Physiker hofften auf neue Erkenntnisse, die dank der „Gravitationswellen-Astronomie“ möglich werden.

Und der Erfolg kam schneller als erwartet. In kurzer Zeit nach dem ersten Nachweis ist es gelungen, eine Quelle der Raumzeitwellen sowohl im sichtbaren Licht als auch in anderen Bereichen des elektromagnetischen Spektrums zu beobachten. Am 17. August 2017 re­gis­trier­ten die Detektoren der beiden LIGO-­Observatorien in den USA und das VIRGO-­Labor in Italien rund 100 Sekunden lang winzige Verwerfungen in der Raumzeit. Mit diesem Ereignis namens GW170817 wurde eine sogenannte „Kilonova“ entdeckt. Diese ist ca. tausendmal heller als eine gewöhnliche Nova. Sie entsteht, wenn zwei Neutronensterne verschmelzen. Nahezu gleichzeitig konnte auch einer der bislang höchst geheimnisvollen Gamma­strahlen­blitze beobachtet werden. Ein weltweites Netzwerk von Astronomen richtete daraufhin seine Teleskope auf die Ursprungshimmelsregion.

Die klassischen Observatorien konnten dadurch eine Reihe neuer Erkenntnisse über Neutronensterne gewinnen. Die Signale enthalten Hinweise da­rauf, dass Gold, Platin und andere schwere chemische Elemente in der Umgebung der Kollision entstanden sind. Ein klarer Hinweis, dass schwere Elemente beim Zusammenstoß oder bei der Verschmelzung von Neutronensternen entstehen. Damit konnte sich die neu geborene Gravitationswellenastronomie bereits jetzt als wertvolles Hilfsmittel für zukünftige Forschungsvorhaben etablieren.

Welche weiteren bahnbrechenden Entdeckungen die Gravitationswellenastronomie noch liefern wird, kann man momentan noch kaum abschätzen. Vielleicht wird man eines Tages sogar das Echo des Urknalls mittels eines Gravitationswellendetektors auffangen können …

Dr. Günter Spanner

Literatur:
Günter Spanner (2016). Das Geheimnis der Gravitationswellen. KOSMOS

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

MZ_2022_04_Heft
14. März, 2023
Biokraftstoff gilt als umwelt- und klimafreundliche Alternative zu fossilen Treibstoffen. Denn weil er aus Pflanzen erzeugt wird, gibt er bei seiner Verbrennung kaum mehr Kohlendioxid ab, als die Pflanzen zuvor bei ihrem Wachstum aufgenommen haben – so jedenfalls die Theorie. Doch gibt es bei der Sache vielleicht einen Haken?
Außerirdisch
7. März, 2023
Was wissen extraterrestrische Intelligenzen von uns, falls es sie gibt? Vielleicht mehr, als uns lieb ist, denn über 2.000 Sterne in der näheren Umgebung haben eine privilegierte Position, von der aus sich die Erde studieren lässt. Zu 75 davon sind bereits irdische Radiosendungen gelangt.
Matheschmerz-Prophylaxe_MT_Beitragsbild
13. Februar, 2023
Youtuber Daniel Jung beschäftigt sich mit „Matheschmerz“, weil Mathe bei vielen Versagensängste hervorruft. Die Psychologin Bettina Hannover berichtet, dass Jugendliche sich vorstellen, dass jemand mit Physik als Lieblingsfach keine Freund*innen hat und unattraktiv aussieht. Und „Digital-kunde“ ist in Deutschland immer noch nicht als Pflichtfach etabliert, obwohl die Diskussion um Web 5.0 schon begonnen hat. MINT-Lehrkräfte haben es wirklich nicht einfach, obwohl diese Kenntnisse für immer mehr Berufe sehr gefragt oder sogar eine Voraussetzung sind.
battery-gcb14cb166_1920
10. Februar, 2023
Weltweit steigende Temperaturen, vermehrt auftretende Dürren und Extremwetterereignisse: Eine der größten Herausforderungen der heutigen Zeit ist der Klimawandel, der hauptsächlich durch die menschengemachten Emissionen von klimaschädlichen Gasen verursacht wird. Ein großer Teil dieser Emissionen wird durch das Verbrennen von fossilen Energieträgern freigesetzt. Erneuerbare Energien wie Wind-, Wasser- oder Solarenergie leisten ihren Beitrag zur Energiewende. Allerdings treten insbesondere Solar- und Windenergien oft mit tages- und jahreszeitlichen Schwankungen auf.
whale-1118876_960_720
29. Januar, 2023
Mithilfe von Thermografie- oder Wärmebildkameras lässt sich die für unsere optische Wahrnehmung nicht erfassbare Infrarotstrahlung detektieren und sichtbar machen. Die von verschiedenen Gegenständen oder Lebewesen emittierte Wärmestrahlung wird durch die Programmierung der Kamera so umgerechnet, dass sogenannte Falschfarbenwärmebilder entstehen. Unterrichtliche Erfahrungen zeigen, dass Lernende diese Farbcodierung zumeist intuitiv verstehen.
Planet Nine
13. Januar, 2023
Jenseits des Neptuns wurden Tausende Himmelskörper gefunden, wo bis vor 30 Jahren nur der neunte Planet Pluto beheimatet schien. Der wiederum ist längst kein Planet mehr – schauen wir uns die Revolutionen am Rande des Sonnensystems einmal genauer an.
Jelly
16. Dezember, 2022
Wenn man von der Kohlenstoffsenke hört, denkt man zunächst an Wälder, Moore oder gar an die Gletscher, doch ein wichtiger Kontributor ist der Ozean, im Speziellen die Tiefsee. Die Tiefsee kann man sich wie eine Wüste vorstellen. Es ist ein Ort der Extreme, mit hoher Salinität, niedrigen Temperaturen und enormem Druck. Doch der eigentliche limitierende Faktor für organisches Leben in der Tiefsee ist die Nahrungsverfügbarkeit, die ab 1.000 Meter Tiefe nahezu verschwindend gering ist. Dementsprechend sind Tiefseeorganismen auf jede Nahrungsquelle angewiesen. Und genau hier kommen Quallen ins Spiel.
Ahnenforschung_Headerbild_1920x1080
9. Dezember, 2022
Nach der Bibel waren die ersten beiden Menschen Adam und Eva, und sie sollen vor etwa 6.000 Jahren gelebt haben. Doch kann das sein?
Klima_titel
18. November, 2022
Jeder dritte Mensch ist aufgrund des Klimawandels und der damit einhergehenden Bedrohung der Lebensgrundlage ausgesprochen verwundbar – das zeigt der Weltklimarat IPCC in seinem neuesten Sachstandsbericht zum Thema „Klimawandel 2022: Folgen, Anpassung und Verwundbarkeit“. Was das für unsere Zukunft bedeutet und warum das oberste Ziel nicht unbedingt lautet, Migration zu verhindern, klärt dieser Beitrag.
Straßenverkehr
26. Oktober, 2022
Über viele Jahrzehnte war der Verkehr, insbesondere der auf der Straße, ein Thema, das zwar ständig auf der Tagesordnung stand, aber nicht als „kritisch“ angesehen wurde. Die individuelle Mobilität und die dazugehörigen Angebote wurden als selbstverständlich eingestuft. Natürlich gab es auch mal Einschränkungen, man denke nur an die beiden Ölkrisen in den 1970er-Jahren, die zu deutlichen Rezessionen führten. Die Bevölkerung trug die Maßnahmen mit und es trat nach einiger Zeit wieder Entspannung ein. Doch wie sieht das heute aus?
MZ-02-22_Berufliches-Miteinander
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
MZ-02-22_Beitragsbild_Milchstraße
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.