Skip to content

Kann Graphen die Welt verändern?

Kein Atom kommt in einer so komplexen Verbindungsvielfalt auf unserem Planeten vor wie Kohlenstoff. In Eiweißen, Fetten und Kohlenhydraten erhält es uns am Leben, als Kohlenstoffdioxid verlässt es unseren Körper und tritt erneut in den Kreislauf des Lebens ein. Doch genauso vielfältig ist Kohlenstoff in seiner Reinstform. Eine dieser Formen ist Graphen, ein bis 2004 für die meisten Menschen noch völlig unbekanntes Material.

Dies änderte sich schlagartig, als der Nobelpreis für Physik im Jahre 2010 an ein Team der Universität von Manchester für „bahnbrechende Experimente in Bezug auf das zweidimensionale Material Graphen“ verliehen wurde. Es war nun plötzlich in aller Munde, und viel wurde über mögliche Anwendungen dieses neuen Supermaterials spekuliert. Verliehen wurde der Nobelpreis an Andre Geim und Konstantin Novoselov, die einige Jahre zuvor mit einem gewöhnlichen Klebeband Graphen von Graphit eines normalen Bleistifts isolieren konnten. Zwar hatte man zu diesem Zeitpunkt bereits andere Methoden ausprobiert (und patentiert), jedoch lieferten diese entweder nur Graphen in schlechter Qualität oder die Methoden waren sehr kompliziert, weshalb man zum Schluss kam, dass freistehendes Graphen und andere zweidimensionale Materialien nicht stabil seien.

Was ist Graphen?

Graphen besteht aus einer einfachen Lage Kohlenstoff-Atome (ca. 0,3 nm dick), die in einem gewöhnlichen hexagonalen Gitter aneinandergebunden sind. Daher gehört es zu den zweidimensionalen Materialien. Man nennt diese Struktur auch Honigwabenstruktur. Im Gegensatz dazu steht Graphit, das man vom Bleistift kennt. Es besteht aus mehreren einlagigen Kohlenstoffatomschichten und bildet somit eine dreidimensionale Struktur. Dabei hat jede Schicht grundsätzlich dieselbe Struktur wie Graphen. Im Gegensatz zu Graphen kommt Graphit aber auch natürlich vor. Wenn ein chemisches Element in verschiedenen Formen existieren kann, die durch unterschiedliches Anordnen der Atome entstehen, nennt man sie Allotrope. Kohlenstoff existiert in einer ungewöhnlichen Vielzahl von Allotropen: Diamant, Lonsdaleit, amorpher Kohlenstoff, Carbyne, Fullerene wie C60, Kohlenstoff-Nanoröhrchen, Graphen und seit neustem Q-Carbon. Viele dieser Materialien wurden erst in den letzten Jahrzehnten entdeckt.

Obwohl viele Allotrope des Kohlenstoffs nützliche Eigenschaften besitzen, zieht Graphen wohl die meiste Aufmerksamkeit der Wissenschaftler auf sich. Der Grund dafür sind seine einzigartigen elektrischen Eigenschaften, die dadurch entstehen, dass sich die Elektronen aufgrund der Anordnung der Kohlenstoff­atome zueinander auf eine spezielle Weise durch das Material bewegen, als hätten sie keine Masse und deshalb fast mit Lichtgeschwindigkeit reisen können. Daraus resultieren Eigenschaften wie eine sehr hohe Leitfähigkeit, die etwa um das Eineinhalbfache größer ist als die des Kupfers, bei einer gleichzeitigen sehr hohen optischen Transparenz.

Transparent – Leitfähig – Reißfest

Diese seltene Kombination macht Graphen zu einem vielversprechenden Kandidaten für transparente Elektroden. Aktuelle Entwicklungen haben bereits großflächige Graphenelektroden mit einem niedrigen Schichtwiderstand von etwa 60 Ω/Fläche bei einer Transparenz von 85 Prozent realisiert. Andere nützliche, aber eher theoretische Eigenschaften von Graphen sind hohe Festigkeit und Elastizität. Graphen ist so reißfest, dass man eine 2×2 m² große Decke aufspannen, einen Bleistift in der Mitte aufstellen und darauf einen Elefanten setzen könnte. Die Graphen­decke würde nicht reißen! Darüber hinaus kann man Graphen um bis zu 20 Prozent dehnen, sodass es das einzige leitfähige Material ist, welches genauso elastisch wie die menschliche Haut ist. Graphen ist sehr flexibel und kann sogar gefaltet werden, ohne daran Schaden zu nehmen. Leider ist es bisher noch nicht gelungen, diese Eigenschaften in großflächigem Graphen zu erreichen, da diese Eigenschaften nur für die „perfekte“ Graphenstruktur gelten und die Wahrscheinlichkeit, dass ein Defekt während der Herstellung vorliegt, mit der Flächengröße stetig steigt. Solche Defekte entstehen z. B. dadurch, dass sich die hauchdünne Schicht übereinander faltet, einreist oder kleine Löcher herausgerissen werden. Außerdem bleiben andere Stoffe sehr gut am Graphen haften und verunreinigen es, sodass die meisten Experimente im Labor nur ganz kleine Stückchen des Materials nutzen, die man sich unter dem Mikroskop anschauen muss.

(a) Die Kohlenstoffatome sind zueinander mit einem Winkel von 120° ausgerichtet, also sp²-hybridisiert. Dadurch sind die Doppelbindungen delokalisiert und die π-Elektronen befinden sich ober- und unterhalb der Kohlenstoffebene. (b) Dadurch können sich die π-Elektronen ungehindert bewegen, welches die Leitfähigkeit von Metallen übertreffen kann. © Fraunhofer-Institut FEP

Graphen mit wenigen Defekten herstellen

Offensichtlich ist es nicht besonders effizient, große Flächen Graphen mit Klebeband und Bleistiften herzustellen, deshalb hat man andere Fertigungsmethoden in Betracht gezogen. Das GLADIATOR-Projekt der EU untersucht Wege, um Graphen großflächig und erschwinglich herzustellen. Dazu wird eine Technik genutzt, die als chemische Dampfphasenabscheidung (CVD) bekannt ist. Graphen wächst hier bei einer Temperatur von 900 °C auf einem Metallkatalysator. Ziel des Projektes ist es, Graphen auf einer großen Fläche herzustellen und es dann als transparente Elektrode für zukünftige Beleuchtungsmittel nutzen zu können. Die CVD-Technik ermöglicht, Graphen für etwa 30 EUR/m² produzieren zu können. Kein Vergleich zu den Kosten konventioneller transparenter Elektroden, die groß angelegten Bergbau und den Import von Seltenen Erden benötigen, wohingegen CVD-Graphen aus einfachen Gasen wie Methan, Acetylen und Wasserstoff mit Hilfe von Kupferkatalysatoren hergestellt werden kann. Der Preis von Graphen reduziert sich enorm, wenn es in größeren Flächen hergestellt wird. Im EU-Projekt wird mit DIN-A4 großen Graphenelektroden experimentiert. Des Weiteren wurde schon gezeigt, dass man Graphenflächen aneinanderreihen kann, um noch größere Graphenplatten zu bauen, die man für Leuchtplatten und große Displays benötigt. Andere zweidimensionale Materialien wie hexagonales Bornitrid oder Übergangsmetall-Dichalcogenide werden intensiv untersucht und es ist noch zu früh um zu sagen, welche Materialien und Produktionsmethoden es in die Anwendung schaffen werden.

Wo wir Graphen schon heute finden können?

Obwohl es noch nicht gelungen ist, perfekte, defektfreie Graphenflächen von der Größe einer menschlichen Hand herzustellen, gibt es bereits einige Anwendungen, wo Graphen bereits genutzt wird, um die mechanischen, thermischen oder elektrischen Eigenschaften einiger Produkte zu verbessern. Zum Beispiel wird Gra­phen bereits in einigen Sportartikeln wie Tennisschlägern beigemengt, um deren mechanische Eigenschaften zu verbessern. Ebenfalls wird es Lacken beigemischt, um deren Korrosions­schutz zu erhöhen. Auch können viele Elektroden für Batterieanwendungen veredelt werden, die dadurch kurze Ladungszyklen ermöglichen und die Lebensdauer erheblich verbessern. Hinsichtlich einer Anwendung als transparente Elektrode wird Graphen bereits für das Touchdisplay von einigen Smartphones genutzt, da für die Touchfunktion die Anforderungen an den Schichtwiderstand nicht ganz so hoch sind wie für klassische Elektrodenanwendungen. Der Vorteil: Graphen kann beim Herunterfallen nicht brechen und die Touchfunktion bleibt erhalten.

Was wir aus der Grundlagenforschung nutzen werden?

In den letzten Jahren haben Wissenschaftler auf der ganzen Welt vieles über Graphen gelernt und dabei eine völlig neue Materialklasse, die sogenannten zweidimensionalen Materialien (2D materials), aus dem Dornröschenschlaf geholt. Viele Effekte, die man häufig nur in der Theorie beschreiben konnte, ließen sich nun experimentell untersuchen und nachweisen, sodass die Modelle in der Quantenphysik und -chemie weiterentwickelt werden können. Die Eigenschaften von Graphen werden vor allem in den nächsten drei bis fünf Jahren in Anwendungen genutzt werden, wo geringes Gewicht und Flexibilität im Vordergrund stehen. Deshalb waren wir im EU-Projekt daran auch interessiert, transparente und vollflexible organische LEDs zu bauen, die Graphen als transparente Elektrode nutzen. Darüber hinaus wurden auch signifikante Fortschritte auf dem Gebiet der Sensorik erzielt, die auch hier eine zeitnahe Anwendung erwarten lassen.

Fazit

Graphen wird allmählich die Eigenschaften bestehender Produkte verbessern, auch wenn dies weniger spektakulär und langsamer geschehen wird, als zunächst erhofft. Aber je mehr wir das Graphen und seine Herstellung verstehen, werden auch völlig neue Produkte realisierbar, an die wir jetzt noch nicht denken. Es ist nur eine Frage der Zeit!

Dr. Beatrice Beyer

Weitere Informationen

Chemie des Graphens
Von Graphit zu Graphen
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
GLADIATOR-Projekt

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.
Mädchen löst eine Matheaufgabe
22. Januar, 2025
Trotz vielfältiger Maßnahmen in den Bereichen Gendersensibilisierung, Geschlechtergerechtigkeit und Chancengleichheit sind Frauen in Deutschland in MINT-Berufen im Schnitt immer noch unterrepräsentiert. Zwar gibt es mittlerweile Fachgebiete mit paritätischer Verteilung (etwa Biologie, Medizin), aber auch viele Fachgebiete mit weiterhin extrem niedrigen Frauenanteilen (beispielsweise Physik, Ingenieurswissenschaften). Das zeigt, wie wichtig es ist, eine gendersensible MINT-Bildung zu fördern, die Mädchen und junge Frauen gezielt ermutigt, sich in bisher männerdominierten Bereichen auszuprobieren und langfristig Fuß zu fassen.
Bild eines Schülers mit VR-Brille
16. Januar, 2025
Kann die Zukunft uns verzaubern? Oft blicken wir mit gemischten Gefühlen auf das, was vor uns liegt. Doch Trend- und Zukunftsforscher wie Matthias Horx ermutigen uns, die Möglichkeiten von morgen nicht nur als mitunter Angst einflößende Herausforderung, sondern auch als vielversprechende Chance zu sehen. Sein Buch Der Zauber der Zukunft lädt dazu ein, sich mit einem positiven Blick auf Veränderungen einzulassen – ein Gedanke, der gerade für Lehrkräfte spannend ist. Doch wie können wir diese Perspektive auch in die Klassenzimmer bringen?
Mit dem DESI-Instrument in Arizona wird gegenwärtig eine dreidimensionale Karte der Position und Bewegung vieler Millionen Galaxien erstellt
27. November, 2024
Der Erkenntnisfortschritt der modernen Kosmologie verlief in den letzten zwei, drei Jahrzehnten rasant. Und doch sind die Konsequenzen äußerst kurios. Noch tappt die Wissenschaft vom Universum buchstäblich im Dunkeln, denn der Hauptbestandteil des Alls ist rätselhaft.
Strahlend heller Sonnenschein am klaren blauen Himmel mit ein paar zarten, dünnen Wolken im Hintergrund.
25. November, 2024
Wie fängt man Sonnenlicht am besten ein? Das ist nicht nur bei der Aufstellung von Photovoltaikanlagen wichtig, sondern auch für die Sonnenenergiewandler der Pflanzen, also bei ihren Blättern und deren Verzweigung und Ausrichtung. Es ist nicht vorteilhaft, wenn sie sich gegenseitig im Wege stehen und beschatten. Die Blattstellung folgt einem geometrischen Muster, das, mathematisch betrachtet, mit Spiralen, Selbstähnlichkeit, Fibonacci-Zahlen und dem Goldenen Winkel zu tun hat.
Mehrere Hände, die in einem Klassenzimmer vor einer Tafel mit mathematischen Formeln in die Luft gehoben sind
15. November, 2024
Bildungsdiskussionen in Deutschland sind immer auf Messers Schneide: Auf der einen Seite müssen wir darüber sprechen, was wir eigentlich erreichen wollen. Auf der anderen Seite soll es nicht in langwierige Diskussionen über abstrakte Begriffe abdriften. Was vonnöten ist, ist ein Kern, der die Diskussion bestimmt. Dieser liegt darin, warum wir noch Schulen haben. Sie sind Orte des Lernens – oder sollten es sein. Wir brauchen einen Gegenentwurf zu dem traditionellen Schulverständnis.
Energiefresser Internet
28. Oktober, 2024
Das Internet ist zu einem unverzichtbaren Teil unseres Alltags geworden. Wir alle nutzen es, wenn auch zu ganz unterschiedlichen Anteilen, zur Kommunikation, Unterhaltung, Arbeit und Bildung. Doch kaum jemand macht sich Gedanken darüber, wie viel Energie für all diese Dienste und Daten im Netz aufgewendet werden muss.
Mikrophon mit Publikum im Hintergrund
13. August, 2024
Im ersten Teil der Reihe über TED Talks ging es um Gamification-Ansätze im Klassenzimmer, um den „Schüler“ ChatGPT und darum, wie künstliche Intelligenz das Bildungssystem bereichern kann. Inzwischen ist das TED-Universum um einige weitere inspirierende Talks zum Thema Bildung angewachsen – und auch ältere Talks haben nichts an Aktualität verloren, denn der Wandel der Bildungslandschaft scheint ein immerwährendes Thema zu sein. Grund genug, immer mal über den eigenen Tellerrand zu schauen und sich für den eigenen Unterricht inspirieren zu lassen, etwa mit einem neuen Blick auf Tests und Klassenarbeiten.
Welcome Collection London
19. Juli, 2024
Wie groß ist der Radius der Erde? Fallen alle Objekte mit derselben Geschwindigkeit? Und warum erscheinen die Farben eines Regenbogens immer in der gleichen Reihenfolge? Bei all dem Wissen, das uns das Internet heute in Sekundenschnelle wie auf einem goldenen Tablett präsentiert, vergessen wir allzu oft, welch jahrhundertealte Geschichte hinter so manchen Fakten steckt – und wie viel Versuch und Irrtum.
Header_MZ Blogbeitrag_04-2023 (12)
18. Juni, 2024
Eine auf den ersten Blick völlig unförmige Figur wird um eine Achse gedreht. Plötzlich nimmt ihr Schatten die Gestalt einer aus einer Kindersendung wohlbekannten Maus an. Dreht man sie weiter, erscheinen nacheinander die beiden besten Freunde der Maus: ein Elefant und eine Ente. Wie kann das sein?
Header_MZ Blogbeitrag_04-2023 (11)
28. Mai, 2024
Inmitten der fortschreitenden Debatte über nachhaltige Mobilität ist der Verbrennungsmotor nach wie vor ein zentraler Akteur auf deutschen Straßen und macht den Verkehrssektor zu einem der größten CO2-Verursacher. Um den Klimawandel zu stoppen, müssen wir den CO2-Ausstoß jedoch reduzieren. Die Nutzung erneuerbarer Energien wie Solarenergie, Windenergie, Wasserkraft und Geothermie anstelle von fossilen Brennstoffen könnte genau dazu beitragen. Der Verkehrssektor könnte durch die Umstellung von Verbrennungsmotoren auf Elektroantriebe oder sogenannte E-Fuels nahezu emissionsfrei sein und somit die Umwelt und das Klima schützen und das Leben auf unserem Planeten nachhaltiger gestalten.
Blogbeitrag_Fachkräftemangel
14. Mai, 2024
Obwohl die Digitalisierung ist in den letzten Jahrzehnten viele Bereiche unseres Lebens verändert hat, ist die Integration digitaler Technologien in Bildungseinrichtungen noch nicht so weit fortgeschritten, wie es sich so manche Lehrkraft und so manche Schüler:in wünschen würde. Dabei werden ebendiese Schüler:innen von heute die IT-Fachkräfte von morgen sein.