Skip to content

Kann Graphen die Welt verändern?

Kein Atom kommt in einer so komplexen Verbindungsvielfalt auf unserem Planeten vor wie Kohlenstoff. In Eiweißen, Fetten und Kohlenhydraten erhält es uns am Leben, als Kohlenstoffdioxid verlässt es unseren Körper und tritt erneut in den Kreislauf des Lebens ein. Doch genauso vielfältig ist Kohlenstoff in seiner Reinstform. Eine dieser Formen ist Graphen, ein bis 2004 für die meisten Menschen noch völlig unbekanntes Material.

Dies änderte sich schlagartig, als der Nobelpreis für Physik im Jahre 2010 an ein Team der Universität von Manchester für „bahnbrechende Experimente in Bezug auf das zweidimensionale Material Graphen“ verliehen wurde. Es war nun plötzlich in aller Munde, und viel wurde über mögliche Anwendungen dieses neuen Supermaterials spekuliert. Verliehen wurde der Nobelpreis an Andre Geim und Konstantin Novoselov, die einige Jahre zuvor mit einem gewöhnlichen Klebeband Graphen von Graphit eines normalen Bleistifts isolieren konnten. Zwar hatte man zu diesem Zeitpunkt bereits andere Methoden ausprobiert (und patentiert), jedoch lieferten diese entweder nur Graphen in schlechter Qualität oder die Methoden waren sehr kompliziert, weshalb man zum Schluss kam, dass freistehendes Graphen und andere zweidimensionale Materialien nicht stabil seien.

Was ist Graphen?

Graphen besteht aus einer einfachen Lage Kohlenstoff-Atome (ca. 0,3 nm dick), die in einem gewöhnlichen hexagonalen Gitter aneinandergebunden sind. Daher gehört es zu den zweidimensionalen Materialien. Man nennt diese Struktur auch Honigwabenstruktur. Im Gegensatz dazu steht Graphit, das man vom Bleistift kennt. Es besteht aus mehreren einlagigen Kohlenstoffatomschichten und bildet somit eine dreidimensionale Struktur. Dabei hat jede Schicht grundsätzlich dieselbe Struktur wie Graphen. Im Gegensatz zu Graphen kommt Graphit aber auch natürlich vor. Wenn ein chemisches Element in verschiedenen Formen existieren kann, die durch unterschiedliches Anordnen der Atome entstehen, nennt man sie Allotrope. Kohlenstoff existiert in einer ungewöhnlichen Vielzahl von Allotropen: Diamant, Lonsdaleit, amorpher Kohlenstoff, Carbyne, Fullerene wie C60, Kohlenstoff-Nanoröhrchen, Graphen und seit neustem Q-Carbon. Viele dieser Materialien wurden erst in den letzten Jahrzehnten entdeckt.

Obwohl viele Allotrope des Kohlenstoffs nützliche Eigenschaften besitzen, zieht Graphen wohl die meiste Aufmerksamkeit der Wissenschaftler auf sich. Der Grund dafür sind seine einzigartigen elektrischen Eigenschaften, die dadurch entstehen, dass sich die Elektronen aufgrund der Anordnung der Kohlenstoff­atome zueinander auf eine spezielle Weise durch das Material bewegen, als hätten sie keine Masse und deshalb fast mit Lichtgeschwindigkeit reisen können. Daraus resultieren Eigenschaften wie eine sehr hohe Leitfähigkeit, die etwa um das Eineinhalbfache größer ist als die des Kupfers, bei einer gleichzeitigen sehr hohen optischen Transparenz.

Transparent – Leitfähig – Reißfest

Diese seltene Kombination macht Graphen zu einem vielversprechenden Kandidaten für transparente Elektroden. Aktuelle Entwicklungen haben bereits großflächige Graphenelektroden mit einem niedrigen Schichtwiderstand von etwa 60 Ω/Fläche bei einer Transparenz von 85 Prozent realisiert. Andere nützliche, aber eher theoretische Eigenschaften von Graphen sind hohe Festigkeit und Elastizität. Graphen ist so reißfest, dass man eine 2×2 m² große Decke aufspannen, einen Bleistift in der Mitte aufstellen und darauf einen Elefanten setzen könnte. Die Graphen­decke würde nicht reißen! Darüber hinaus kann man Graphen um bis zu 20 Prozent dehnen, sodass es das einzige leitfähige Material ist, welches genauso elastisch wie die menschliche Haut ist. Graphen ist sehr flexibel und kann sogar gefaltet werden, ohne daran Schaden zu nehmen. Leider ist es bisher noch nicht gelungen, diese Eigenschaften in großflächigem Graphen zu erreichen, da diese Eigenschaften nur für die „perfekte“ Graphenstruktur gelten und die Wahrscheinlichkeit, dass ein Defekt während der Herstellung vorliegt, mit der Flächengröße stetig steigt. Solche Defekte entstehen z. B. dadurch, dass sich die hauchdünne Schicht übereinander faltet, einreist oder kleine Löcher herausgerissen werden. Außerdem bleiben andere Stoffe sehr gut am Graphen haften und verunreinigen es, sodass die meisten Experimente im Labor nur ganz kleine Stückchen des Materials nutzen, die man sich unter dem Mikroskop anschauen muss.

(a) Die Kohlenstoffatome sind zueinander mit einem Winkel von 120° ausgerichtet, also sp²-hybridisiert. Dadurch sind die Doppelbindungen delokalisiert und die π-Elektronen befinden sich ober- und unterhalb der Kohlenstoffebene. (b) Dadurch können sich die π-Elektronen ungehindert bewegen, welches die Leitfähigkeit von Metallen übertreffen kann. © Fraunhofer-Institut FEP

Graphen mit wenigen Defekten herstellen

Offensichtlich ist es nicht besonders effizient, große Flächen Graphen mit Klebeband und Bleistiften herzustellen, deshalb hat man andere Fertigungsmethoden in Betracht gezogen. Das GLADIATOR-Projekt der EU untersucht Wege, um Graphen großflächig und erschwinglich herzustellen. Dazu wird eine Technik genutzt, die als chemische Dampfphasenabscheidung (CVD) bekannt ist. Graphen wächst hier bei einer Temperatur von 900 °C auf einem Metallkatalysator. Ziel des Projektes ist es, Graphen auf einer großen Fläche herzustellen und es dann als transparente Elektrode für zukünftige Beleuchtungsmittel nutzen zu können. Die CVD-Technik ermöglicht, Graphen für etwa 30 EUR/m² produzieren zu können. Kein Vergleich zu den Kosten konventioneller transparenter Elektroden, die groß angelegten Bergbau und den Import von Seltenen Erden benötigen, wohingegen CVD-Graphen aus einfachen Gasen wie Methan, Acetylen und Wasserstoff mit Hilfe von Kupferkatalysatoren hergestellt werden kann. Der Preis von Graphen reduziert sich enorm, wenn es in größeren Flächen hergestellt wird. Im EU-Projekt wird mit DIN-A4 großen Graphenelektroden experimentiert. Des Weiteren wurde schon gezeigt, dass man Graphenflächen aneinanderreihen kann, um noch größere Graphenplatten zu bauen, die man für Leuchtplatten und große Displays benötigt. Andere zweidimensionale Materialien wie hexagonales Bornitrid oder Übergangsmetall-Dichalcogenide werden intensiv untersucht und es ist noch zu früh um zu sagen, welche Materialien und Produktionsmethoden es in die Anwendung schaffen werden.

Wo wir Graphen schon heute finden können?

Obwohl es noch nicht gelungen ist, perfekte, defektfreie Graphenflächen von der Größe einer menschlichen Hand herzustellen, gibt es bereits einige Anwendungen, wo Graphen bereits genutzt wird, um die mechanischen, thermischen oder elektrischen Eigenschaften einiger Produkte zu verbessern. Zum Beispiel wird Gra­phen bereits in einigen Sportartikeln wie Tennisschlägern beigemengt, um deren mechanische Eigenschaften zu verbessern. Ebenfalls wird es Lacken beigemischt, um deren Korrosions­schutz zu erhöhen. Auch können viele Elektroden für Batterieanwendungen veredelt werden, die dadurch kurze Ladungszyklen ermöglichen und die Lebensdauer erheblich verbessern. Hinsichtlich einer Anwendung als transparente Elektrode wird Graphen bereits für das Touchdisplay von einigen Smartphones genutzt, da für die Touchfunktion die Anforderungen an den Schichtwiderstand nicht ganz so hoch sind wie für klassische Elektrodenanwendungen. Der Vorteil: Graphen kann beim Herunterfallen nicht brechen und die Touchfunktion bleibt erhalten.

Was wir aus der Grundlagenforschung nutzen werden?

In den letzten Jahren haben Wissenschaftler auf der ganzen Welt vieles über Graphen gelernt und dabei eine völlig neue Materialklasse, die sogenannten zweidimensionalen Materialien (2D materials), aus dem Dornröschenschlaf geholt. Viele Effekte, die man häufig nur in der Theorie beschreiben konnte, ließen sich nun experimentell untersuchen und nachweisen, sodass die Modelle in der Quantenphysik und -chemie weiterentwickelt werden können. Die Eigenschaften von Graphen werden vor allem in den nächsten drei bis fünf Jahren in Anwendungen genutzt werden, wo geringes Gewicht und Flexibilität im Vordergrund stehen. Deshalb waren wir im EU-Projekt daran auch interessiert, transparente und vollflexible organische LEDs zu bauen, die Graphen als transparente Elektrode nutzen. Darüber hinaus wurden auch signifikante Fortschritte auf dem Gebiet der Sensorik erzielt, die auch hier eine zeitnahe Anwendung erwarten lassen.

Fazit

Graphen wird allmählich die Eigenschaften bestehender Produkte verbessern, auch wenn dies weniger spektakulär und langsamer geschehen wird, als zunächst erhofft. Aber je mehr wir das Graphen und seine Herstellung verstehen, werden auch völlig neue Produkte realisierbar, an die wir jetzt noch nicht denken. Es ist nur eine Frage der Zeit!

Dr. Beatrice Beyer

Weitere Informationen

Chemie des Graphens
Von Graphit zu Graphen
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
GLADIATOR-Projekt

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Weite Moorlandschaft
22. April, 2025
Frans Martens, ein Bursche aus dem Nachbardorf des Moorprofessors Hans Joosten in den Niederlanden, radelte eines schönen Tages ein bisschen durch die Gegend, da fiel er plötzlich ohnmächtig mit seinem Fahrrad um. Der Pups eines nebenliegenden Moores hatte ihn umgehauen.
Illustration von Neutronensternen
18. März, 2025
Mit Gravitationswellen lassen sich die verborgenen Seiten des Alls belauschen. Die meisten bislang entdeckten Quellen sind kollidierende Schwarze Löcher.
Erschöpfte Frau greift sich an die Stirn
3. März, 2025
Lampenfieber vor einer Präsentation, Prüfungsangst oder einfach ein stressiger Schultag – Stress gehört für viele Schüler:innen leider zum Schulalltag, ebenso wie für Lehrkräfte. Doch zu viel davon kann die Konzentration und das Wohlbefinden beeinträchtigen. Genau hier kommt der Vagusnerv ins Spiel: Wie kein anderer Nerv hat der längste Nerv unseres Körpers, der Vagusnerv, und das damit verbundene parasympathische Nervensystem, in den letzten Jahren höchstes Interesse bei gesundheitsorientierten Menschen gewonnen. Kein Wunder, ist er doch DAS zentrale Kommunikationsorgan zwischen dem Gehirn und den Körperorganen. Das Beste: Er lässt sich aktivieren.
Zeppelin in der Abendsonne
25. Februar, 2025
Von Radaröfen haben Sie nie gehört? Auch Hydrobergbau ist Ihnen kein Begriff, ebenso wenig wie die Kohlenstaub-Lokomotive? Selbst beim Itera-Plastikfahrrad oder beim Elektropflug glimmt kein Erinnerungsfunke auf? Kein Grund zur Sorge: Fast niemand erinnert sich mehr an diese Dinge, denn es sind „gescheiterte Innovationen“, deren Existenz über kurz oder lang von der Welt vergessen wurde. In Erinnerung sind bestenfalls die angesichts verlorener Subventionsmillionen spektakuläreren Fälle, etwa die zumindest vorerst gefloppte Magnetschwebebahn Transrapid oder der 2002 wohl endgültig gescheiterte Frachtzeppelin Cargolifter, in dessen Halle sich heute immerhin vom Urlaub in den Tropen träumen lässt.
Forscherin mit Handschuhen bearbeitet eine grüne Salatpflanze im Labor mit einer Pinzette
20. Februar, 2025
Die Klimakrise verschärft sich rasant und stellt schon jetzt weltweit Menschen vor existenzielle Probleme, auch im Hinblick auf Landwirtschaft und Ernährung. Die Landwirtschaft leidet unter den Folgen der Klimakrise und muss sich an die neuen Extremwettersituationen anpassen. Zudem erhöhen das massive Artensterben und andere ökologische Folgen menschlichen Handelns zunehmend den Druck, bisherige ökonomische und soziale Praktiken zu hinterfragen und zu verändern. Ein aktuell kontrovers diskutierter Ansatz ist die Neue Gentechnik (NGT).
viele Euro-Münzen auf einem Haufen
20. Februar, 2025
Der reichste Mann der Welt ist der Entenhausener Erpel Dagobert Duck. Auch der zweit-reichste Mann ist ein Erpel. Er heißt Mac Moneysac und lebt in Simililand in Südafrika. Erst auf Platz drei kommt mit dem Amerikaner Elon Musk ein Mensch. Doch wie reich Dagobert Duck ist, darüber gibt es unterschiedliche, zum Teil stark widersprüchliche Angaben, und da er, genau wie Donald Trump, seine Steuererklärungen nicht veröffentlicht, wird man die genaue Größe seines Vermögens wohl auch nie erfahren. Der am häufigsten genannte und wahrscheinlichste Wert ist 30 Fantastillionen Taler. Aber wie groß ist die Zahl Fantastillion?
Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.
Mädchen löst eine Matheaufgabe
22. Januar, 2025
Trotz vielfältiger Maßnahmen in den Bereichen Gendersensibilisierung, Geschlechtergerechtigkeit und Chancengleichheit sind Frauen in Deutschland in MINT-Berufen im Schnitt immer noch unterrepräsentiert. Zwar gibt es mittlerweile Fachgebiete mit paritätischer Verteilung (etwa Biologie, Medizin), aber auch viele Fachgebiete mit weiterhin extrem niedrigen Frauenanteilen (beispielsweise Physik, Ingenieurswissenschaften). Das zeigt, wie wichtig es ist, eine gendersensible MINT-Bildung zu fördern, die Mädchen und junge Frauen gezielt ermutigt, sich in bisher männerdominierten Bereichen auszuprobieren und langfristig Fuß zu fassen.
Bild eines Schülers mit VR-Brille
16. Januar, 2025
Kann die Zukunft uns verzaubern? Oft blicken wir mit gemischten Gefühlen auf das, was vor uns liegt. Doch Trend- und Zukunftsforscher wie Matthias Horx ermutigen uns, die Möglichkeiten von morgen nicht nur als mitunter Angst einflößende Herausforderung, sondern auch als vielversprechende Chance zu sehen. Sein Buch Der Zauber der Zukunft lädt dazu ein, sich mit einem positiven Blick auf Veränderungen einzulassen – ein Gedanke, der gerade für Lehrkräfte spannend ist. Doch wie können wir diese Perspektive auch in die Klassenzimmer bringen?
Mit dem DESI-Instrument in Arizona wird gegenwärtig eine dreidimensionale Karte der Position und Bewegung vieler Millionen Galaxien erstellt
27. November, 2024
Der Erkenntnisfortschritt der modernen Kosmologie verlief in den letzten zwei, drei Jahrzehnten rasant. Und doch sind die Konsequenzen äußerst kurios. Noch tappt die Wissenschaft vom Universum buchstäblich im Dunkeln, denn der Hauptbestandteil des Alls ist rätselhaft.
Strahlend heller Sonnenschein am klaren blauen Himmel mit ein paar zarten, dünnen Wolken im Hintergrund.
25. November, 2024
Wie fängt man Sonnenlicht am besten ein? Das ist nicht nur bei der Aufstellung von Photovoltaikanlagen wichtig, sondern auch für die Sonnenenergiewandler der Pflanzen, also bei ihren Blättern und deren Verzweigung und Ausrichtung. Es ist nicht vorteilhaft, wenn sie sich gegenseitig im Wege stehen und beschatten. Die Blattstellung folgt einem geometrischen Muster, das, mathematisch betrachtet, mit Spiralen, Selbstähnlichkeit, Fibonacci-Zahlen und dem Goldenen Winkel zu tun hat.
Mehrere Hände, die in einem Klassenzimmer vor einer Tafel mit mathematischen Formeln in die Luft gehoben sind
15. November, 2024
Bildungsdiskussionen in Deutschland sind immer auf Messers Schneide: Auf der einen Seite müssen wir darüber sprechen, was wir eigentlich erreichen wollen. Auf der anderen Seite soll es nicht in langwierige Diskussionen über abstrakte Begriffe abdriften. Was vonnöten ist, ist ein Kern, der die Diskussion bestimmt. Dieser liegt darin, warum wir noch Schulen haben. Sie sind Orte des Lernens – oder sollten es sein. Wir brauchen einen Gegenentwurf zu dem traditionellen Schulverständnis.