Skip to content

Ein Greifarm aus Licht – die Optische Pinzette

Licht übt Druck auf mikroskopische Teilchen aus. Mit der Optischen Pinzette machen sich Forscher dieses Phänomen zu Nutze. Im PhotonLab des Exzellenzclusters Munich-­Centre for Advanced Photonics können Schülerinnen und Schüler eigenständig mit einer Optischen Pinzette experimentieren.

Wie hält man mikroskopische Objekte wie Moleküle oder Nanoteilchen oder gar Atome fest? Mit klassischer Mechanik kommt man da nicht weit. Und bis zum Jahr 1970 kannte man auch keine Möglichkeit, solche Objekte etwa für Untersuchungen unter dem Mikroskop zu fixieren oder sie wunschgemäß zu bewegen. Dieses Problem ließ Arthur Ashkin, damals Physiker in den Bell Laboratories (USA), nicht mehr los. Seit James Maxwell im Jahr 1873 erkannt hatte, dass Licht Druck auf Körper ausübt und Pjotr Nikolajewitsch Lebedev das im Jahr 1901 experimentell bestätigte, gab es für Ashkin einen vielversprechenden Ansatz für seine Forschung. Licht könnte das Problem lösen. Er experimentierte schließlich mit extrem starkem Licht, bis es ihm gelang, es so auf Nanoteilchen zu fokussieren, dass diese sich nicht mehr bewegten. Damit war klar: Mithilfe des Drucks des Lichts lassen sich winzige Teilchen kontrollieren. Fokussiert man Licht exakt auf die Teilchen, gewinnt man Kontrolle über sie. Der Grundstein für die Optische Pinzette war gelegt. Heute arbeiten in der Mikroskopie Optische Pinzetten mit Laserlicht. Das Licht übt auf Partikel winzige Kräfte aus, die nur wenige Nanonewton betragen. Doch das reicht aus, um die Teilchen im Wasser ruhig zu halten oder etwa biologische Moleküle zu kontrollieren.

Wie lässt sich der Lichtdruck beschreiben. Da Licht über Wellen- und Teilcheneigenschaften verfügt, ist das Phänomen mit der klassischen Mechanik nicht ausreichend erklärbar. Denn anders als etwa Moleküle in der Luft haben Lichtteilchen, also die Photonen, keine Ruhemasse. Photonen sind Quantenteilchen, die sich immer mit Lichtgeschwindigkeit bewegen. Sie tragen einen Impuls und Energie in sich. Treffen diese Teilchen auf eine Oberfläche und werden reflektiert oder gebrochen, dann über­tragen sie eine Kraft.

Die Optische Pinzette für Schülerinnen und Schüler

Im Schülerlabor PhotonLab des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP) am Max-Planck Institut für Quantenoptik (MPQ) in Garching können Schülerinnen und Schüler mit einer Optischen Pinzette eigene praktische Erfahrungen mit dem Lichtdruck sammeln. Die Firma Thorlabs hat dieses Gerät speziell für Unterrichts- und Demonstrationszwecke entwickelt.

Die Optische Pinzette ist ein optisches Mikroskop, in das Laserlicht eingekoppelt und anschließend in der Objektebene fokussiert wird. Im Fokus des Lichts können winzige Körper fixiert werden. Als Proben eignen sich Polystyrolkügelchen, die zunächst ohne Laser im Mikroskop beobachtet werden.

Auffällig sind die gut sichtbaren Zappelbewegungen der Kügelchen. Der Grund dafür ist die Brownsche Wärmebewegung. Benannt ist sie nach dem schottischen Botaniker Robert Brown. Brown beobachtete 1827 unter dem Mikroskop, dass wenige Mikrometer große Partikel, in einem Wassertropfen schwebende Pollenkörner unregelmäßige ruckartige Bewegungen machten. Er nahm an, dass diese Partikel, von denen wir heute wissen, dass es Zellbestandteile waren, ein Hinweis auf eine, den Pollen innewohnende Lebenskraft sei, wie sie schon lange Zeit von Wissenschaftlern als existent vermutet wurde.

Die Optische Pinzette im PhotonLab können die Schülerinnen und Schüler selbstständig betreiben. Auf einem Bildschirm wird ein roter Punkt – der fokussierte Laserstrahl – sichtbar. Mit diesem roten Licht fangen sie die zuvor präparierten Teilchen ein. In dem Moment, in dem sie die Partikel einfangen, bleiben diese stehen. Bei ausreichender Haltekraft gelingt es auch, die Teilchen mithilfe von Motoren an der Optischen Pinzette zu bewegen. In der Biologie werden so die Organellen unterschiedlicher Zellen ausgetauscht.

Kompliziertere Aufgaben mit der Optischen Pinzette können Schülerinnen und Schüler bei einer Seminararbeit bearbeiten. Sie können die Brownsche Bewegung quantitativ analysieren, die maximale Haltekraft der Pinzette bestimmen und die Zähflüssigkeit einer Probe untersuchen.

Im Labor von Prof. Immanuel Bloch verschieben die Forscher mit einem Laserstrahl einzelne Atome ©Bloch
Im Labor von Prof. Immanuel Bloch verschieben die Forscher mit einem Laserstrahl einzelne Atome ©Bloch

Wie das Licht Teilchen fixiert

Das Experimentieren mit der Optischen Pinzette zeigt den Schülerinnen und Schülern, dass Licht eine Kraft ausübt. Je nach Teilchengröße und Wellenlänge des Lichtes gibt es unterschiedliche Erklärungen für das Phänomen.

Wenn das fixierte Teilchen kleiner ist als die Wellenlänge des Laserlichts, erklärt man das Phänomen mit der Rayleigh­Streuung. Die Kraftwirkung auf das Teilchen geschieht hier mit Dipolkräften. Das einfallende elektromagnetische Feld des Lichts induziert einen Dipol, mit dem das Teilchen wiederum wechselwirkt. Daraus resultiert eine Kraft, die immer zum Fokus des Laserlichts hin gerichtet ist.

Für Schülerinnen und Schüler leichter zu verstehen ist die Erklärung im sogenannten Mie-Regime. Ist das Teilchen größer als die Wellenlänge des Lichtes, kann man das Fixieren mit der Strahlenoptik veranschaulichen. Voraussetzung ist allerdings, dass die zu manipulierenden Teilchen transparent sind. Dann kann man das auf ein Kügelchen eintreffende Laserlicht als Summe vieler Teilstrahlen darstellen. Ein Teilstrahl wird gebrochen und erfährt eine Richtungsänderung und damit eine Impulsänderung und überträgt somit eine gewisse Kraft auf das Kügelchen, das nun eine Richtungsänderung erfährt. Betrachtet man mehrere Teilstrahlen und berücksichtigt deren Intensität, ergibt sich, dass die Summe der Kräfte immer in Richtung des Laserfokus gerichtet ist. Das funktioniert sogar im dreidimensionalen Raum, wodurch z. B. ein Fett-Tröpfchen unter Wasser festgehalten wird.

Atome im Laserlicht

Die Optische Pinzette kommt auch bei den Wissenschaftlern zum Einsatz. Am Max-Planck-Institut für Quantenoptik befinden sich die Laser-Forschungslabore der Quantenoptiker gleich neben dem Schülerlabor. Die Wege sind also kurz, wenn man die Arbeit der Physiker einmal hautnah erleben möchte. So dirigieren dort Prof. Immanuel Bloch und sein Team nach dem Prinzip der Optischen Pinzette ultrakalte Atome an für sie vorgesehene Positionen in künstlichen Kristallen. Die Struktur dieser Kristalle besteht ebenfalls aus Laserlicht. Es fixiert die Atome an ihren vorgesehenen Positionen. In den Kristallen beobachten die Forscher dann einzelne Atome und deren gemeinsame Dynamik. Die Experimente geben Einblick in die fundamentalen quantenphysikalischen Prozesse, die z. B. für die Supraleitung, Magnetismus und neuartige Quantenspeicher relevant sind. Und durch diese völlig neu geschaffenen Anordnungen von Atomen könnten später einmal innovative Materialien entstehen, die in der Natur so nicht vorkommen.

Thorsten Naeser und Dr. Silke Stähler-Schöpf

Schülerlabor PhotonLab

Einen Einblick in die spannende Forschung mit Licht erhalten Schulklassen ab der Klasse 9 bei einem kostenlosen Besuch des PhotonLabs. Nach einem Einführungsvortrag können sie nicht nur die Optische Pinzette ausprobieren, sondern auch Musik mit Licht übertragen, Wellenlängen und Haardicken messen und vieles mehr. Zudem kann ein richtiges Laserlabor besichtigt werden. Weitere Informationen finden Sie hier: www.photonworld.de | www.munich-photonics.de

Wozu man den Lichtdruck auch nutzt

Mithilfe des Lichtdrucks kann man Teilchen nicht nur dirigieren, sondern sie auch beschleunigen. Durch Lichtdruck beschleunigte Elektronen liefern Röntgenstrahlung für die medizinische Bildgebung. Ebenso ist es möglich, hochenergetische Ionen zu erzeugen, um Tumore damit zu bestrahlen. Ein spannendes Interview mit Prof. Jörg Schreiber zum Thema Lichtdruck finden Sie hier.

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Arbeit mit Werkzeugen
13. August, 2024
Der Wolpertinger (lateinisch crisensus crisensus) ist ein bayrisches Fabelwesen, das sich aus mehreren Tierarten zusammensetzt und in verschiedenen Formen auftreten kann. Er eignet sich besonders für den Einsatz im naturwissenschaftlichen Unterricht, da ebendiese individuelle Zusammensetzung eine tiefergehende Beschäftigung mit den Lebewesen des Waldes und den unterschiedlichen Besonderheiten erlaubt, die sie auszeichnen. Hier kommen konkrete Ideen, wie das auf spannende Weise umgesetzt werden kann.
Kinder an Laptops
3. Juli, 2024
digi.reporter ist ein kinderleicht zu bedienendes Content-Management-System (CMS) für Schüler:innen ab der Grundschule, mit dem sie lernen, eigenständig und rechtskonform multimediale Beiträge für eine webbasierte Veröffentlichung wie einer Online-Schulzeitung zu verfassen.
Mädchen nutzt KI im Unterricht am Telefon
26. Juni, 2024
Einen kreativen Unterrichtseinstieg suchen, differenzierte Lernziele erstellen, Fehlerschwerpunkte in Klassenarbeiten erarbeiten oder auch einen Entwurf für einen Elternbrief formulieren lassen – künstliche Intelligenz (KI) eröffnet uns schon jetzt ganz schön nützliche Möglichkeiten zur Vereinfachung unseres Unterrichtsalltags. Aber auch unseren Schüler:innen bietet KI mindestens genauso viel Hilfestellung bei der Bearbeitung schriftlicher Lern- und Leistungsaufgaben.
LEGO Education Fußball-Unterrichtseinheit
Gesponserte Inhalte
27. Mai, 2024
Ab Juni wird ganz Deutschland wieder verstärkt im Fußball-Fieber sein. Auch viele Kinder begeistern sich bereits früh für den Sport und haben mindestens genausoviel Vorfreude wie Erwachsene. Dank der neuen Lerneinheiten von LEGO® Education SPIKE™ Essential bringen Sie den Fußball-Hype ab sofort auch in Ihr Klassenzimmer. Spiel, Spaß und maximale Aufmerksamkeit sind beim Bauen und Programmieren von Modellen rund um das Thema Fußball garantiert!
Header_MZ Blogbeitrag_04-2023 (15)
21. Mai, 2024
Die Vorgaben des Instituts zur Qualitätsentwicklung im Bildungswesen (IQB) für das Abitur in Mathematik lassen den Schulen zwei Alternativen bei der Wahl des rechnerischen Hilfsmittels: das modulare Mathematiksystem (MMS) und den wissenschaftlichen Taschenrechner (WTR). Bei der Entscheidung sollte jedoch nicht das Abitur im Fokus stehen, sondern der fachdidaktische Nutzen für den Unterricht.
LE-SPIKE Essential-1920x1080px
Gesponserte Inhalte
9. April, 2024
Unsere Welt verändert sich schnell, fast täglich gibt es technische Innovationen. Die Art und Weise, wie Kinder lernen und wichtige Fähigkeiten erwerben, muss mit diesen Veränderungen Schritt halten. Wir brauchen einen Unterricht, der die Kinder optimal auf die Welt von morgen vorbereitet und die lebenslange Lust am Lernen weckt.
Header_MZ Blogbeitrag_04-2023 (17)
25. März, 2024
Trotz einer Reihe internationaler Programme wie der Weltdekade „Bildung für nachhaltige Entwicklung“ (2005–2014) oder dem UNESCO-Weltaktionsprogramm BNE“ (2015–2019) sind Inhalte aus dem Kontext Bildung für nachhaltige Entwicklung (BNE) noch nicht an allen Stellen in der deutschen Schulbildung und insbesondere im Fachunterricht Mathematik angekommen.
Version 2
29. Januar, 2024
Energieträger sind für die Wärmeerzeugung in Gebäuden unerlässlich und werden oft in Form von fossilen Brennstoffen wie Gas, Öl, Holz oder Kohle bereitgestellt. Einerseits ist aufgrund ihres begrenzten natürlichen Vorkommens ein sorgsamer Umgang mit diesen Ressourcen geboten. Andererseits entsteht durch die Verbrennung fossiler Energieträger das Treibhausgas CO2, das als Katalysator des Klimawandels gilt.
Header_MZ Blogbeitrag_04-2023 (6)
16. Januar, 2024
Es gehört zu den Kernaufgaben einer Lehrkraft, Schüler*innen Rückmeldungen auf ihre Lernleistung zu geben – in Form von Noten oder mit mündlichem oder schriftlichem Feedback. Bei der Methode des Peer Assessments wird diese Aufgabe von den Lernenden selbst übernommen: Sie geben sich wechselseitig Rückmeldung auf ihre erbrachte Leistung. Ob sie davon profitieren können, untersucht das Forscherteam Double, McGrane und Hopfenbeck in einer 2020 erschienenen Metaanalyse. Sie prüfen dabei zudem, wie die Methode effektiv im Unterricht umgesetzt werden kann.
Header_MZ Blogbeitrag_04-2023 (5)
11. Januar, 2024
Anlässlich des Internationalen Tags gegen Rassismus am 21. März 2023 veröffentlichte das Thüringer Bildungsministerium eine Handreichung für Thüringer Schulen zur Anwendung der Jenaer Erklärung gegen Rassismus im Unterricht. Die Publikation der Autoren Karl Porges und Uwe Hoßfeld und der AG Biologiedidaktik der Friedrich-Schiller-Universität Jena ist ein konkretes inhaltliches Angebot für rassismuskritische Bildungsarbeit an Thüringer Schulen.
Header_MZ Blogbeitrag_04-2023 (2)
20. Dezember, 2023
Der Einsatz von Escape Games oder EduBreakouts im Unterricht ist heute bei Weitem keine so exotische Methode mehr wie noch vor ein paar Jahren. Mittlerweile gibt es zahlreiche Formate dieses kreativen Konzepts und alle sorgen für motivierende Abwechslung im Klassenzimmer. Auch aus meinem Unterricht sind Escape Games kaum noch wegzudenken und meine Schüler*innen fordern diese regelmäßig mit den Worten ein: „Herr Bendlow, wann machen wir mal wieder ein Escape Game?“
Header_Entdeckt_04-2023
20. Dezember, 2023
Vor dem Hintergrund einer immer komplexer werdenden und zunehmend technisierten Gesellschaft werden Medienbildung und digitales Lernen auch im Bildungsbereich unabdingbar. Es gibt mehr und mehr hoch spezialisierte Berufsbilder, für die die sogenannten 21st century skills wie digitale Affinität, vernetztes Denken und Problemlösefähigkeit eine zentrale Rolle spielen. Gleichzeitig ist im Hinblick auf aktuelle gesamtgesellschaftliche Themen und Probleme wie den Klimawandel ein interdisziplinäres Denken und Arbeiten notwendig geworden. Ziel der Schulen muss es dabei sein, genau hier anzusetzen, um Schüler*innen auf neue Herausforderungen in der Berufs- und Lebenswelt vorzubereiten.