Skip to content

Rätsel der Asymmetrie zwischen Materie und Antimaterie

Wir alle verdanken unsere Existenz einer der größten Fragen der Physik. Beim Urknall wurde gleich viel Materie wie Antimaterie gebildet. Antimaterie besitzt die gleichen Eigenschaften wie Materie mit entgegengesetzter Ladung. Treffen Materie und Antimaterie aufeinander, annihilieren sie sich, d. h., sie verwandeln sich in Strahlung. Wenn also beim Urknall gleich viel Materie wie Antimaterie vorhanden war, sollten sie sich gegenseitig zerstrahlt haben. Doch wir alle bestehen aus Materie und beobachten mehr Materie als Antimaterie. Woher kommt also dieses Ungleichgewicht, dem wir unser Leben verdanken?

Die Welt der Physik besteht aus Symmetrien, genauer den CPT-Symmetrien. C steht für „Charge“ und bezeichnet die Ladungsspiegelung, also die Beobachtung, dass sich Antiteilchen physikalisch genauso verhalten wie die dazugehörigen Teilchen. P steht für „Parity“, also eine (Raum-)Spiegelung, T bezeichnet die Zeitumkehr (Time). Das CPT-Theorem besagt, dass jeder Vorgang, der aus einem anderen möglichen Vorgang durch Vertauschen von Materie mit Antimaterie, durch zusätzliche Spiegelung des Raumes und eine Umkehr der Zeitrichtung hervorgeht, auch im Einklang mit den Gesetzen der Physik steht.

Elektrisches Dipolmoment

Die elektrisch ungeladenen Neutronen bilden gemeinsam mit Protonen den Atomkern. Sie bestehen aus jeweils drei Quarks, zusammengehalten durch die starke Wechselwirkung. Es stellt sich die Frage, ob sie ein elektrisches Dipolmoment (nEDM) besitzen. Machen wir es bildlich: Wenn man eine Wippe ins Gleichgewicht bringt, sorgt man dafür, dass der Massenmittelpunkt am Auflagepunkt der Wippe liegt. Anstatt die Position der Wippenden aber zu verändern, wäre es auch denkbar, stattdessen den Auflagepunkt der Wippe so zu verschieben, bis er genau im Schwerpunkt der Wippe ist. Und genau darum geht es hier: Tauschen wir die Massen mit elektrischen Ladungen, ist dieser Schwerpunkt genau das elektrische Dipolmoment. Falls also das Neutron ein elektrisches Dipolmoment besitzt, sind die Ladungen innerhalb des Neutrons permanent verschoben. Ein permanentes elektrisches Dipolmoment könnte sich aber eigentlich unter Paritätsund Zeittransformationen nicht erhalten. Das wäre eine CP-Verletzung, und damit genau die Brechung der Symmetrie, nach der wir suchen, um das Ungleichgewicht zwischen Materie und Antimaterie zu erklären.
Auch das Standardmodell der Elementarteilchenphysik, das unser gegenwärtiges Verständnis der Teilchenphysik erfolgreich beschreibt, kennt ein elektrisches Dipolmoment des Neutrons, das ungefähr bei dn = 10−32 e cm liegt. Dieses Dipolmoment und die damit verbundene Verletzung der Symmetrie wäre allerdings zu gering, um das Ungleichgewicht zwischen Materie und Antimaterie zu erklären. Wir wissen, dass das elektrische Dipolmoment des Neutrons dn < 1,3 · 10−26 e cm sein muss. Die momentanen Messungen versuchen, das obere Limit um zwei Größenordnungen zu verbessern, und könnten damit viele Theorien ausschließen, die ein höheres elektrisches Dipolmoment des Neutrons vorhersagen und auch die Asymmetrie im Universum erklären.

Vermessung

Vermessen wird das nEDM zurzeit u. a. am Paul Scherrer Institut in der Schweiz. Verwendet werden ultrakalte, d. h. besonders langsame und energiearme Neutronen, die sich deswegen auch gut speichern lassen. In magnetisch sehr stark abgeschirmten Räumen wird ein magnetisches Feld angelegt. Aufgrund seines magnetischen Moments kreiselt das Neutron in dem angelegten Magnetfeld und diese Frequenz wird gemessen. Nun wird zusätzlich ein elektrisches Feld angelegt. Sollte das Neutron ein elektrisches Dipolmoment haben, so ändert sich die Frequenz der Kreiselbewegung. Aus der Änderung der Frequenz lässt sich nun das nEDM berechnen.
Die Forschenden hoffen, durch die Verbesserung der Homogenität des Magnetfeldes die Genauigkeit der Messergebnisse zu erhöhen und so in den kommenden Jahren immer präziser das nEDM vermessen zu können und dem Rätsel der Asymmetrie zwischen Materie und Antimaterie näher zu kommen.

Lara Grabitz
juFORUM e. V.

Das Deutsche Jungforschernetzwerk – juFORUM e. V. ist ein Verein, der den produktiven Austausch zwischen wissenschaftlich interessierten jungen Menschen fördert. In ihm engagieren sich Jungforscher für Jungforscher. www.juforum.de

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Teamteaching – ein Schuljahr in der Lehr:werkstatt
18. Juli, 2022
Ein Fach, eine Lehrkraft und ein Klassenzimmer voller Schüler*innen. Dieses typische Unterrichtssetting wird gerade in den praxisorientierten MINT-Fächern oft nicht mehr den Anforderungen zeitgemäßen Lernens gerecht. Gleichzeitig sehen sich viele Lehrkräfte immer breiteren Anforderungen an ihren Berufsstand gegenüber und wünschen sich neben Entlastung auch frischen Wind in ihrem Klassenzimmer. Genau hier setzt die Lehr:werkstatt an.
Mit den neuen Bildungspaketen der Technik Museen Sinsheim Speyer wird Ihr Ausflug zum Erlebnis!
Gesponserte Inhalte
7. Juli, 2022
Begeben Sie sich auf eine Reise zurück bis ins antike Griechenland und lernen Wissenschaftler*innen und Erfinder*innen wie Volta, Franklin und Tesla kennen, oder treten sie eine Reise mit den NASA Astronauten Neil Armstrong, Buzz Aldrin und Michael Collins ins All an, um auf dem Mond ihren Fußabdruck zu hinterlassen.
Mit Wasserstoff in eine grüne Zukunft
4. Juli, 2022
Das Pariser Klimaziel, die globale Erderwärmung auf 1,5 Grad Celsius zu beschränken, könnte noch erreicht werden. Aber es ist eine Herkulesaufgabe, für die wir den Ausbau der erneuerbaren Energien vervielfachen müssen. Und wir brauchen sogenannten grünen Wasserstoff, der mithilfe von regenerativem Strom hergestellt wird. Die Technologie spielt eine Schlüsselrolle auf dem Weg zur Klimaneutralität, die wir weltweit bis Mitte des Jahrhunderts erreichen wollen.
Der menschliche Faktor oder wie berufliches   Miteinander gelingen kann
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
Kollision der Giganten
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
Link- und Lese-Tipps
8. Juni, 2022
Wir haben wieder hilfreiche Links im Web sowie spannende wissenschaftliche Bücher gesammelt. Viel Spaß beim Stöbern!
Allzweckmittel Spinnengift
6. Juni, 2022
Viele schrecken vor Spinnen zurück, der 32-jährige Dr. Tim Lüddecke nicht. Im Gegenteil: Er hat seine Doktorarbeit über Spinnengifte geschrieben. Am Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME in Gießen erforscht er, was man aus Tiergift alles machen kann: Medizin zum Beispiel. Oder Insektizide. Alles total umweltfreundlich.
Computer: Zufälle gibt es nicht
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
Schwarmverhalten – lieber gemeinsam als einsam
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
Batterien – Speicher der Zukunft?
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
Wie unsere Gedanken entstehen und warum wir sie lesen können
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.