Skip to content

Was ist ein Quantencomputer?

Quantencomputer sind in der wissenschaftlichen Öffentlichkeit ein zunehmend diskutiertes Thema. Sie basieren auf Gesetzen der Quantenmechanik, die im frühen 20. Jahrhundert entwickelt wurden und können genutzt werden, um Berechnungen durchzuführen, die klassischen Computern nicht zugänglich sind.

Manche Probleme sollten sich daher mit Quantencomputern schneller lösen lassen, die auf klassischen Computern (zu)viel Rechenleistung erfordern würden. Diese besonderen Computer sind heute keine reinen Gedankenkonstrukte mehr, in den letzten Jahrzehnten wurden erste Prototypen realisiert. Die Anzahl der Quantenbits – Qubits – dieser Quantencomputer ist allerdings noch extrem gering, sodass ihre potenziellen Fähigkeiten in den meisten Anwendungsfällen noch keine relevanten Vorteile gegenüber klassischen Computern besitzen.

Bits und Qubits

Auf klassischen Computern werden Informationen als Bits gespeichert und verarbeitet. Jedes Bit kann nur genau einen von zwei möglichen Zustände annehmen, nämlich 1 oder 0. Analog dazu gibt es die sogenannten Qubits, also quantenmechanische Bits. Dies sind quantenmechanische Systeme, die ebenfalls mit zwei Zuständen beschrieben werden können. Beispielsweise besitzt ein einzelnes Elektron – wie ein kleiner Stabmagnet – ein magnetisches Moment. Wird die Ausrichtung dieses magnetischen Moments entlang einer bestimmten Richtung gemessen, erhält man nur einen von genau zwei Werten, nämlich entweder eine Ausrichtung entlang (↑) oder entgegen (↓) der Messrichtung. Bis hierhin unterscheidet sich das durch die Zustände des Elektrons dargestellte Qubit nicht von einem klassischen Bit. Der wesentliche Unterschied besteht darin, dass sich ein Qubit auch in einer sogenannten Überlagerung der beiden möglichen Zustände befinden kann. Befindet es sich beispielsweise zu gleichen Teilen in den beiden Zuständen (quasi ↑ + ↓), so würde bei einer Messung mit einer Wahrscheinlichkeit P(↑) = 50 % die Ausrichtung ↑ bzw. mit P(↓) = 50 % die Ausrichtung ↓ gemessen werden. Dies bedeutet, dass das Qubit in beiden Zuständen gleichzeitig ist. Dies ist die zentrale Besonderheit der Quantenmechanik: Bei der Messung „entscheidet“ sich das Teilchen zufällig, in welchem Zustand es ist. Ist das Elektron in einem bestimmten Überlagerungszustand, so wird bei einer Messung mit einer gewissen Wahrscheinlichkeit P(↑) der Wert ↑, ansonsten ↓ gemessen wird. Im Allgemeinen kann sich die Messwahrscheinlichkeit beliebig auf die beiden Zustände verteilen, P(↑) und P(↓) müssen nicht gleich groß sein. Warum ist es aber wichtig, dass es Überlagerungen geben kann, wenn man doch immer nur einen der beiden Werte messen kann? Die Antwort ist, dass mit der Überlagerung dann sinnvoll gearbeitet werden kann, solange nicht gemessen wird. Und in ihr steckt deutlich mehr Information als in einem klassischen Bit, das nur zwei
verschiedene Werte kennt.

Vorteile und Ausblick

Was ist nun der Vorteil von Qubits gegenüber klassischen Bits? In einem klassischen System mit n Bits kann nur einer von 2n binären Zuständen, wie z. B. ↑↑↓↑↑↓↓↓, eingenommen werden, in der Quantenmechanik hingegen können alle 2n Zustände überlagert werden. Eine Operation auf einem Quantencomputer kann all diese Zustände gleichzeitig verarbeiten – solange nicht gemessen wird! Damit kann er bei bestimmten Problemen mit deutlich weniger Rechenschritten eine Lösung finden als ein klassischer Computer, der alle Optionen nacheinander probieren müsste. Ein solches Problem ist zum Beispiel das Knacken des RSA-Verschlüsselungsverfahrens, auf dessen Sicherheit heute Banken, Wirtschaft und die sichere Kommunikation im Internet vertrauen. Die Sicherheit dieser Verschlüsselung beruht darauf, dass es viel einfacher ist, zwei große Primzahlen zu multiplizieren (z. B. 11 · 13=143), als die Primfaktoren von 143 (11 und 13) zu finden. Der für Quantencomputer geschriebene Shor-Algorithmus ist jedoch in der Lage, die Primfaktoren großer Zahlen in deutlich weniger Rechenschritten zu berechnen als ein klassischer Computer, der bei großen Zahlen Jahrhunderte brauchen würde. Damit lägen den Entwicklerinnen und Entwicklern eines hinreichend großen Quantencomputers fast alle heute verschlüsselten Daten zu Füßen. Allerdings müsste dieser für sinnvolle Anwendungen aus mindestens einigen Hundert Qubits bestehen, heutige Quantencomputer weisen jedoch gerade mal ca. 10–20 gut funktionierende Qubits auf.

Leo Herrmann, juFORUM e. V.


Linktipps:

IBM Q – lernen und experimentieren direkt am Quantencomputer quantumexperience.ng.bluemix.net/qx
Wie funktionieren Quantencomputer? www.bit.ly/2qn2c7P

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Teamteaching – ein Schuljahr in der Lehr:werkstatt
18. Juli, 2022
Ein Fach, eine Lehrkraft und ein Klassenzimmer voller Schüler*innen. Dieses typische Unterrichtssetting wird gerade in den praxisorientierten MINT-Fächern oft nicht mehr den Anforderungen zeitgemäßen Lernens gerecht. Gleichzeitig sehen sich viele Lehrkräfte immer breiteren Anforderungen an ihren Berufsstand gegenüber und wünschen sich neben Entlastung auch frischen Wind in ihrem Klassenzimmer. Genau hier setzt die Lehr:werkstatt an.
Mit den neuen Bildungspaketen der Technik Museen Sinsheim Speyer wird Ihr Ausflug zum Erlebnis!
Gesponserte Inhalte
7. Juli, 2022
Begeben Sie sich auf eine Reise zurück bis ins antike Griechenland und lernen Wissenschaftler*innen und Erfinder*innen wie Volta, Franklin und Tesla kennen, oder treten sie eine Reise mit den NASA Astronauten Neil Armstrong, Buzz Aldrin und Michael Collins ins All an, um auf dem Mond ihren Fußabdruck zu hinterlassen.
Mit Wasserstoff in eine grüne Zukunft
4. Juli, 2022
Das Pariser Klimaziel, die globale Erderwärmung auf 1,5 Grad Celsius zu beschränken, könnte noch erreicht werden. Aber es ist eine Herkulesaufgabe, für die wir den Ausbau der erneuerbaren Energien vervielfachen müssen. Und wir brauchen sogenannten grünen Wasserstoff, der mithilfe von regenerativem Strom hergestellt wird. Die Technologie spielt eine Schlüsselrolle auf dem Weg zur Klimaneutralität, die wir weltweit bis Mitte des Jahrhunderts erreichen wollen.
Der menschliche Faktor oder wie berufliches   Miteinander gelingen kann
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
Kollision der Giganten
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
Link- und Lese-Tipps
8. Juni, 2022
Wir haben wieder hilfreiche Links im Web sowie spannende wissenschaftliche Bücher gesammelt. Viel Spaß beim Stöbern!
Allzweckmittel Spinnengift
6. Juni, 2022
Viele schrecken vor Spinnen zurück, der 32-jährige Dr. Tim Lüddecke nicht. Im Gegenteil: Er hat seine Doktorarbeit über Spinnengifte geschrieben. Am Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME in Gießen erforscht er, was man aus Tiergift alles machen kann: Medizin zum Beispiel. Oder Insektizide. Alles total umweltfreundlich.
Computer: Zufälle gibt es nicht
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
Schwarmverhalten – lieber gemeinsam als einsam
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
Batterien – Speicher der Zukunft?
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
Wie unsere Gedanken entstehen und warum wir sie lesen können
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.