Exoskelette als Forschungszwerkzeug für Industrie 4.0

Muskel-Skelett-Erkrankungen sind eine der Hauptursachen für Arbeitsunfähigkeit in Deutschland und anderen Industrieländern. Exoskelette, also am Körper getragene Stützstrukturen, können das Verletzungsrisiko minimieren. Für den breiten industriellen Einsatz sind die bisherigen passiven Lösungen allerdings zu unflexibel.

Erkrankungen am Muskel-­Skelett-­Sys­tem schaden den Mitarbeiterinnen und Mitarbeitern und ihrer Firma. Derzeit heben und tragen rund 25 Prozent der Erwerbstätigen im Arbeitsalltag schwere Lasten. Muskel-­Skelett-­System-­Erkrankungen (MSE) sind mit einem Spitzenwert von etwa 24 Prozent eine der häufigsten Ursachen krankheitsbedingter Fehltage. Dominiert werden die MSE von Schäden an Lendenwirbelsäule, Schulter-­Arm-­Hand-­System, der Halswirbelsäule und den Kniegelenken. Besonders betroffen sind die Bereiche Montage und Logistik.

Muskel-Skelett-Erkrankungen vorbeugen

Eine zukünftige Möglichkeit, Arbeits­ausfäl­len vorzubeugen, können Exo­ske­let­te sein. Die am Körper getragenen Stützstrukturen sollen Arbeitende bei schwerer körperlicher Belastung mit zusätzlicher Kraft versorgen. Beispielsweise können Exoskelett-Hilfen genutzt werden, um stark belastende Tätigkeiten in Produktionsbetrieben zu erleichtern oder vor ergonomisch bedenklichen Bewegungsmustern zu bewahren. Manche Bewegungen, die Arbeitende über Jahre ausführen müssen, schädigen den Bewegungsapparat und führen zu Gelenkverschleiß. Zeitdruck und Akkordziele führen nicht selten dazu, dass bereits angeschaffte Handhabungshilfen wie Vakuumgreifer und leichte Lastkräne in der Praxis nicht angenommen werden. Spätfolgen aufgrund ungünstiger Bewegungsprofile sind nicht hinreichend im Bewusstsein verankert. Nicht immer ist es möglich, die Arbeitsabläufe so zu verändern, dass belastende Tätigkeiten signifikant reduziert oder automatisiert werden können. Technische Assistenzsysteme eröffnen die Perspektive, erfahrene Mitarbeiterinnen und Mitarbeiter auch mit 60 Jahren noch kräftig Hand anlegen lassen zu können. Die Vision des Fraunhofer IPA besteht in der Entwicklung aktiv angetriebener adaptiver Exoskelett­lösungen, die den Nutzer in Abhängigkeit der Aufgabe bedarfsgerecht und intuitiv unterstützen. Doch um ein „smartes“ aktiv angetriebenes Exo­skelett oder dessen Teilkomponenten zu realisieren, ist ein eingespieltes interdisziplinäres Team notwendig.

Bewegungsablauf des Menschen als Forschungsgrundlage

In Zusammenarbeit mit den Forschenden der angewandten Biomechanik können mit Hilfe zahlreicher Messsysteme individuelle Bewegungsanalysen erstellt und Schlussfolgerungen in Form ergonomischer und biomechanischer Anforderungen gezogen werden. Know-how im Bereich der Orthopädie stellt sicher, dass die Dynamik von Mobilitätshilfen und Exo­skelet­ten dem natürlichen Bewegungsablauf so nahe wie möglich kommt. Dies minimiert die Wahrscheinlichkeit unerwünschter Haltungsschäden aufgrund von Fehlbelastungen, die vom Assistenzsystem beeinflusst werden können. Man muss die technischen Hilfen korrekt an das Individuum anpassen, damit der Tragekomfort gewährleistet ist. Welche Körperpartien dürfen belastet werden? Wo lassen sich die Kräfte, die so ein Apparat entwickelt, in den Körper des Patienten ableiten? Diese Fragen müssen Orthopäden, Ergonomieexperten, Physiotherapeuten, Sportwissenschaftler und Ingenieure gemeinsam beantworten.

Ergonomiewerkzeug mit Bewegungsfreiheit

Die IPA-Wissenschaftlerinnen und -Wissenschaftler haben ein Ober­körper­exo­ske­lett entwickelt, das den Träger unterstützt, dabei aber auch vergleichsweise schnelle und intuitive Bewegungen zulässt. An Ellenbogen und Schultern wurden Antriebsmodule integriert, die Bewegungen mit hohem Drehmoment unterstützen. An der Schulterpartie ist eine mehrachsige Gelenkkette angebracht, die der Schultergelenkgruppe folgt; so können selbst Überkopfmontagen bewältigt werden.

Vom Ergonomie- zum Forschungswerkzeug

Beim Stuttgart Exo-Jacket des Fraunhofer IPA handelt es sich einerseits um eine Entwicklungsplattform, die sich mit Hilfe von Aktorik, Sensorik, diversen Steuerungs- und Regelungsmodi sowie einer Funkschnittstelle zur Konfiguration und Kommunikation zunehmend zu einem Forschungswerkzeug für adaptive Assistenzsysteme entwickelt.
Denn wenn das System mittels Sensorik Gelenkwinkel und -momente sowie seine Orientierung im Raum und die Lage der Gliedmaßen erfasst, was hindert die Wissenschaft daran, diese Messdaten zur Beurteilung ergonomischer Gesichtspunkte heranzuziehen, möglicherweise unter Verwendung physiologischer Signale wie Herzratenvariabilität? Die wandelbare Fabrik mit bedarfsgerechtem Personaleinsatz durch Echtzeitbewertung der Ergonomie ist eine Vision, mit der sich die Wissenschaftlerinnen und Wissenschaftler des Fraunhofer IPA identifizieren. Noch ist das Zukunftsmusik. Wie man jedoch spätestens seit Salim Ismails Werk „Exponential Organizations“ weiß, verlaufen technologische Entwicklungen im Zeitalter der Digitalisierung nicht inkrementell-linear, sondern exponentiell oder werden substituiert. Beim IPA bleibt der Mensch im Fokus. Er ist niemals obsolet.

Bisherige Exoskelett-Lösungen

Bisher kommen Exoskelette allerdings hauptsächlich in der Forschung zum Einsatz, in der Industrie ist die Akzeptanz noch verhalten, wenn auch zunehmend ein positiver Anfragetrend zu verzeichnen ist. Die aktuell am Markt verfügbaren Lösungen sind in der Regel passive Systeme mit rudimentärer (manueller) Anpassungsfähigkeit an die Arbeitssituation.
Die Zukunft von Assistenzsystemen wie Exoskeletten ist zweifelsfrei vernetzt und eng an Entwicklungen im Bereich Virtual Reality (AG)/Augmented Reality
(AG) gekoppelt. Aktuelle Trends aus der Automobil- und Unterhaltungsindustrie nehmen bereits heute und in Zukunft vermehrt Einfluss auf die Entwicklung insbesondere aktiver Exoskelette.

Marius Fabian

 

Marius Fabian arbeitet als Wissenschaftler am Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA. Er leitet die Gruppe „Antriebssysteme und Exoskelette“ in der Abteilung „Biomechatronische Systeme“.

 


Weitere Informationen

Fraunhofer IPA: Antriebssysteme und Exoskelette