Skip to content

Schneller als das Licht?

Es gibt Teilchen, die sich mit Überlichtgeschwindigkeit bewegen. Ob das auch im Vakuum gilt, ist allerdings noch reine Spekulation.

Boshafte Zeitgenossen führen physikalische Laien manchmal mit einer Wette aufs Glatteis, indem sie behaupten, dass Überlichtgeschwindigkeiten schon häufig gemessen wurden. Dies stimmt tatsächlich, denn zwar ist die Lichtgeschwindigkeit eine universale Naturkonstante (knapp 300.000 Kilometer pro Sekunde) – aber nur im Vakuum. Wenn Licht durch transparente Stoffe wie Glas oder Wasser strahlt, wird es langsamer. Man kann die Lichtgeschwindigkeit in Materie sogar auf Schrittgeschwindigkeit abbremsen. In vielen Medien, auch Eis, Wasser oder Luft, können Teilchen wie Elektronen oder Neutrinos dann schneller sein als das Licht.

Dabei senden sie eine schwache Strahlung aus. Das hat der russische Physiker Pawel A. Tscherenkow 1934 vorausgesagt, wofür er 1958 den Physik-Nobelpreis erhielt. Dieses bläuliche Leuchten ist ein Pendant zu dem Überschallknall, den ein Düsenflugzeug beim Durchbrechen der Schallmauer erzeugt. Die Tscherenkow- Strahlung ist zuweilen sogar mit bloßem Auge sichtbar: beispielsweise in Abklingbecken von Kernreaktoren, ausgelöst von der Radioaktivität nuklearer Brennstäbe.

Warum es nachts nie ganz dunkel ist

Tscherenkow-Strahlung entsteht auch in der Erdatmosphäre, erzeugt durch Partikel der kosmischen Strahlung sowie durch Gammaquanten, die millionenfach energiereicher sind als sichtbares Licht. Treffen sie einen Atomkern in der Luft, kommt es zu einer Kaskade aus Tausenden von Sekundärteilchen, die Tscherenkow- Strahlung emittieren können.

Ein kleiner Teil der natürlichen Helligkeit des Nachthimmels müsse von solchen Lichtblitzen stammen, meinte 1947 der Physik-Nobelpreisträger Patrick Blackett. Diese Vorhersage überprüften William Galbraith und John Jelley 1952 auf einem Feld beim südenglischen Dorf Harwell. Dort stellten sie eine innen schwarz angemalte Mülltonne auf, in der sie einen 25-Zentimeter-Parabolspiegel eingebaut hatten sowie eine Röhre, die einfallendes Licht verstärken sollte. Tatsächlich maßen sie ultrakurze Blitze im Minuten-Takt. Dass die Tscherenkow-Strahlung immer dann aufleuchtete, wenn auch geladene Teilchen aus dem All eintrafen, wiesen die Physiker mit angeschlossenen Geiger- Müller- Zählern nach.

Bis zu Gammastrahlen-Teleskopen war es allerdings noch ein weiter Weg. Das erste Tscherenkow-Teleskop baute Trevor Weekes nach jahrelanger Entwicklungsarbeit zusammen mit einigen Kollegen am Whipple-Observatorium auf dem Mount Hopkins in Arizona. Sein 10-Meter- Spiegel bestand aus zahlreichen Segmenten – bis heute ist das die Grundlage dieses Teleskop- Typs. Es dauerte weitere drei Jahre, bis Weekes 1989 erstmals Gammastrahlung maß: vom 7.000 Lichtjahre entfernten Krebs- Nebel im Sternbild Stier, der aus der beobachteten Supernova 1.054 hervorging.

Die bläulichen Blitze sind auch das Licht der Erkenntnis für den IceCube-Detektor am Südpol. Dort werden sie im unterirdischen Eis von energiereichen Neutrinos und anderen Partikeln ausgelöst und nicht von Spiegeln gemessen, sondern von speziellen Lichtsensoren, die bis zu 2,5 Kilometer tief ins Antarktis-Eis versenkt worden sind. Weil die Flugrichtungen eines Neutrinos, seines Sekundärteilchens und der Tscherenkow-Strahlung nahezu identisch sind, lässt sich ungefähr die Position am Himmel errechnen, aus der das Neutrino stammt.

Afrikanische Rekordastronomie: Das größte Observatorium für Tscherenkow-Strahlung ist zurzeit H.E.S.S. (High Energy Stereoscopic System) in Namibia.  Es wurde unter führender Beteiligung des Max-Planck-Instituts für Kernphysik in Heidelberg errichtet. Seit 2003 spähen vier 13-Meter-Spiegel in den  Himmel, 2012 kam noch ein 28-Meter-Teleskop dazu. H.E.S.S hat in fast 3.000 Beobachtungsstunden über 80 Gamma-Quellen entdeckt – mehr als alle  anderen Tscherenkow-Teleskope zusammen.

Tachyonen – überlichtschnelle  Geisterteilchen

Die Existenz überlichtschneller Teilchen, die sich durch Tscherenkow-Strahlung offenbaren, widerspricht nicht Albert Einsteins Spezieller Relativitätstheorie, wonach sich Materie nie schneller als die Vakuum-Lichtgeschwindigkeit bewegen kann. Denn die Naturkonstante c ist für den leeren Raum definiert.

Doch rein theoretisch könnte es auch Teilchen geben, die immer schneller als c sind. Für sie hat der Physiker Gerald Feinberg von der Columbia University in New York 1967 den Namen Tachyonen geprägt (von griechisch „tachys“: schnell). Schon fünf Jahre vorher formulierten Olexa- Myron P. Bilaniuk und zwei Kollegen die Hypothese, dass es Partikel geben könnte, die sich ab dem ersten Moment ihrer Entstehung in einer subatomaren Teilchenreaktion stets überlichtschnell bewegen. (Und sogar der römische Dichter Lukrez hatte bereits über Teilchen spekuliert, die schneller als das Licht aus der Sonne flitzen.)

Auch Tachyonen stehen nicht im Widerspruch zur Speziellen Relativitätstheorie. Diese besagt nur, dass es für Körper mit Masse unmöglich ist, c zu erreichen, egal wie viel Energie und Zeit man dafür einsetzt. Die Gleichungen der Relativitätstheorie lassen sogar ein Schlupfloch für überlichtschnelle Teilchen – falls deren Ruhemasse m imaginär ist, wie Jakov P. Terleckij bereits 1960 erwogen hat. Sie wäre dann weder positiv noch negativ. Mathematisch gälte weder m > 0 noch m < 0, sondern m2 < 0. (Dahinter steckt die imaginäre Zahl i, für die gilt: i2 = -1.) Tachyonen sind nicht die ersten Teilchen, deren Existenz aus theoretischen Gründen vorhergesagt werden konnte, bevor ihr experimenteller Nachweis glückte. Nobelpreis-gekrönte Beispiele sind Positro nen, Anti pro tonen, Omega- Minus- Teilchen, Z- und W-Bosonen, die drei Sorten von Neutrinos und die sechs Sorten von Quarks. Freilich kamen sie alle bereits in einer ausgearbeiteten physikalischen Theorie vor oder ergaben sich, wie im Fall der Neutrinos, als Konsequenzen experimenteller Befunde.

Seltsame Eigenschaften

Tachyonen wären nur dann real, wenn ihre Geschwindigkeit die des Lichts übertrifft. Zwar ist die Ruhemasse der Tachy onen imaginär, doch befinden sie sich niemals in Ruhe. Ihre tatsächliche Masse hat aufgrund der Überlichtgeschwindigkeit stets einen reellen Wert. Den erreichen sie beim 1,414fachen von c. Das ist gewissermaßen die natürliche Geschwindigkeit eines Tachyons.

Wenn es Energie verliert, wird es nicht langsamer, sondern schneller. Wenn man es beschleunigen will, muss man also versuchen, es aufzuhalten. Geht die Energie gegen null, wird seine Geschwindigkeit unendlich. Das Tachyon wäre dann in einem „transzendenten Zustand“, also quasi überall zugleich.

Besonders kurios: Die Zeit der Tachyonen läuft rückwärts. Aus unserer Perspektive bewegen sie sich also aus der Zukunft in die Vergangenheit. Diese Eigenschaft zeigt nicht nur deutlich, wie relativ die Zeit ist, sondern könnte auch frappierende Konsequenzen haben: Wenn Tachyonen mit normaler Materie wechselwirken, könnte man mit ihnen im Prinzip Signale zeitlich rückwärts übertragen – beispielsweise Morse-Zeichen in die Vergangenheit senden oder mit einem Tachyonen-Telefon sich selbst die Lottozahlen der nächsten Ziehung mitteilen.

Allerdings ist es unklar, ob Tachyonen mit Licht oder unterlichtschnellen Teilchen interagieren. Nur so könnten sie sich verraten (und womöglich genutzt werden, etwa für Raketenantriebe).

Wenn Tachyonen elektrisch geladen wären, würden sie Tscherenkow- Strahlung aussenden. Doch ein solcher Nachweis ist trotz intensiver Suche (und einiger Falsch mel dun gen) niemandem gelungen. Ein Energieverlust bei Teilchen- Umwandlun gen könnte ein indirektes Indiz für Tachyonen sein, oder es kommt zu Streu- Effekten, wenn sie der Starken oder Schwachen Kernkraft unterliegen. Ersteres ist experimentell inzwischen ausgeschlossen. Zweiteres erscheint noch möglich, wenn die imaginäre Ruhemasse der Tachyonen sehr gering wäre. So haben Alan Kostelecký von der Indiana University in Bloomington und seine Kollegen 1985 vorgeschlagen, dass die bekannten Neutrinos überlichtschnell seien, also Tachyonen wären. Die seither gewonnenen teilchen- und astrophysikalischen Daten sprechen allerdings dagegen.

Rüdiger Vaas


Über den Autor: Rüdiger Vaas ist Philosoph, Publizist, Dozent  sowie Astronomie- und Physik-Redakteur  beim Monatsmagazin bild der wissenschaft,  Mitherausgeber des Fachbuchs The Arrows of Time (Springer) und Autor von 14 Büchern.


Literaturtipps: Bücher von Rüdiger  Vaas zum Thema (alle  KOSMOS Verlag,  Stuttgart):

Tunnel durch Raum  und Zeit. Schwarze  Löcher, Zeitreisen und  Überlichtgeschwindigkeit. (2018, 8. Aufl.)

Jenseits von Einsteins Universum.   Von der Relativitätstheorie zur   Quantengravitation. (2017, 4. Aufl.)


Download-Material: Tachyonen jenseits der Lichtmauer 

Hier können Sie das gewünschte Zusatzmaterial zum Download anfordern.

[caldera_form id=”CF5ec3d42d652b1″]

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

MZ-01-23_Beitragsbild (3)
26. Mai, 2023
Erstmals wurde ein Planetoid beschossen, um seine Umlaufbahn zu verändern. Der Test hat gezeigt, dass sich die Menschheit künftig gegen Meteoriteneinschläge aus dem Weltraum wehren kann.
pay-1036469_960_720
11. Mai, 2023
Warum klettern wir ohne Sauerstoffgerät auf den Mount Everest oder durchsteigen im Winter die Eigernordwand? Warum wollen wir immer schneller laufen, immer höher springen oder eine Kugel immer weiter stoßen? Warum reisen wir zum Nordpol, zum Südpol oder zum Mond? Warum haben die Menschen des Mittelalters gigantische und viel zu große Kirchen gebaut? Es ist nicht leicht, diese Fragen zu beantworten. Rationale Gründe, so etwas zu tun, gibt es nicht. Vielleicht ist es das Erfahren und Hinausschieben der eigenen Grenzen, das den Menschen einen süchtig machenden Kitzel verschafft. Vielleicht ist es auch der Genuss des Ruhms, die oder der Größte, Schnellste, Beste oder Weitestgereiste zu sein.
MZ-01-23_Beitragsbild (2)
28. April, 2023
Fortwährende komplexe Krisenszenarien erfordern von Lehrkräften und Schulen eine stärkere und fächerübergreifende Handlungsorientierung bei der Begleitung von Schüler*innen in ihrer Auseinandersetzung mit der Welt. Lehrkräfte haben hier eine zentrale Vorbildfunktion, die nicht zuletzt einen konstruktiven und reflektierten Umgang mit den eigenen Belastungen durch kleine alltägliche bis hin zu großen globalen Krisen erfordert.
MZ_2022_04_Heft
14. März, 2023
Biokraftstoff gilt als umwelt- und klimafreundliche Alternative zu fossilen Treibstoffen. Denn weil er aus Pflanzen erzeugt wird, gibt er bei seiner Verbrennung kaum mehr Kohlendioxid ab, als die Pflanzen zuvor bei ihrem Wachstum aufgenommen haben – so jedenfalls die Theorie. Doch gibt es bei der Sache vielleicht einen Haken?
Außerirdisch
7. März, 2023
Was wissen extraterrestrische Intelligenzen von uns, falls es sie gibt? Vielleicht mehr, als uns lieb ist, denn über 2.000 Sterne in der näheren Umgebung haben eine privilegierte Position, von der aus sich die Erde studieren lässt. Zu 75 davon sind bereits irdische Radiosendungen gelangt.
Matheschmerz-Prophylaxe_MT_Beitragsbild
13. Februar, 2023
Youtuber Daniel Jung beschäftigt sich mit „Matheschmerz“, weil Mathe bei vielen Versagensängste hervorruft. Die Psychologin Bettina Hannover berichtet, dass Jugendliche sich vorstellen, dass jemand mit Physik als Lieblingsfach keine Freund*innen hat und unattraktiv aussieht. Und „Digital-kunde“ ist in Deutschland immer noch nicht als Pflichtfach etabliert, obwohl die Diskussion um Web 5.0 schon begonnen hat. MINT-Lehrkräfte haben es wirklich nicht einfach, obwohl diese Kenntnisse für immer mehr Berufe sehr gefragt oder sogar eine Voraussetzung sind.
battery-gcb14cb166_1920
10. Februar, 2023
Weltweit steigende Temperaturen, vermehrt auftretende Dürren und Extremwetterereignisse: Eine der größten Herausforderungen der heutigen Zeit ist der Klimawandel, der hauptsächlich durch die menschengemachten Emissionen von klimaschädlichen Gasen verursacht wird. Ein großer Teil dieser Emissionen wird durch das Verbrennen von fossilen Energieträgern freigesetzt. Erneuerbare Energien wie Wind-, Wasser- oder Solarenergie leisten ihren Beitrag zur Energiewende. Allerdings treten insbesondere Solar- und Windenergien oft mit tages- und jahreszeitlichen Schwankungen auf.
Intermediate Horseshoe Bat (Rhinolophus affinis).
3. Februar, 2023
Viren haben stets unsere Geschichte beeinflusst, doch der Mensch schafft selbst die Voraussetzungen für neue Infektionskrankheiten. Weil wir die Welt verändern, lösen wir Pandemien aus, die wir dann nicht mehr beherrschen. Das Buch Die Rache des Pangolin zeigt nicht nur, wie das Coronavirus entstand, sondern auch, welche Rolle Tiere bei Pandemien spielen und wie der Schwund natürlicher Lebensräume und der Artenvielfalt neue Seuchen heraufbeschwört.
whale-1118876_960_720
29. Januar, 2023
Mithilfe von Thermografie- oder Wärmebildkameras lässt sich die für unsere optische Wahrnehmung nicht erfassbare Infrarotstrahlung detektieren und sichtbar machen. Die von verschiedenen Gegenständen oder Lebewesen emittierte Wärmestrahlung wird durch die Programmierung der Kamera so umgerechnet, dass sogenannte Falschfarbenwärmebilder entstehen. Unterrichtliche Erfahrungen zeigen, dass Lernende diese Farbcodierung zumeist intuitiv verstehen.
Planet Nine
13. Januar, 2023
Jenseits des Neptuns wurden Tausende Himmelskörper gefunden, wo bis vor 30 Jahren nur der neunte Planet Pluto beheimatet schien. Der wiederum ist längst kein Planet mehr – schauen wir uns die Revolutionen am Rande des Sonnensystems einmal genauer an.
Jelly
16. Dezember, 2022
Wenn man von der Kohlenstoffsenke hört, denkt man zunächst an Wälder, Moore oder gar an die Gletscher, doch ein wichtiger Kontributor ist der Ozean, im Speziellen die Tiefsee. Die Tiefsee kann man sich wie eine Wüste vorstellen. Es ist ein Ort der Extreme, mit hoher Salinität, niedrigen Temperaturen und enormem Druck. Doch der eigentliche limitierende Faktor für organisches Leben in der Tiefsee ist die Nahrungsverfügbarkeit, die ab 1.000 Meter Tiefe nahezu verschwindend gering ist. Dementsprechend sind Tiefseeorganismen auf jede Nahrungsquelle angewiesen. Und genau hier kommen Quallen ins Spiel.
Ahnenforschung_Headerbild_1920x1080
9. Dezember, 2022
Nach der Bibel waren die ersten beiden Menschen Adam und Eva, und sie sollen vor etwa 6.000 Jahren gelebt haben. Doch kann das sein?