Skip to content

Attosekundenlaser – kürzere Pulse, schnellere  Dynamiken und kleinere Strukturen

Warum und zu welchem Zweck werden Laser benötigt, deren Pulsdauer kürzer als eine Femtosekunde (1 fs = 1 * 10-15 s) ist?

Bereits mit Femtosekundenlasern ist es Wissenschaftlerinnen und Wissenschaftlern gelungen, die Bewegungen von Atomkernen unter anderem in Molekülen zu verstehen. Sie senden keinen dauerhaften Laserstrahl aus, sondern kontinuierlich Pulse von einer Länge im Femtosekundenbereich (1 fs = 1*10-15 s, Femtosekunden bereich bedeutet: 1–999 fs). Um die deutlich kleineren und somit auch schnelleren Elektronen zu beobachten, sind Femtosekundenlaser allerdings zu langsam. Dafür benötigt man Pulslängen im Attosekundenbereich (1 as = 1 * 10-18 s = 0,000 000 000 000 000 001 s). Um mit den Attosekunden-Laserpulsen Forschung zu betreiben, muss jeder Puls in einem Zug aus Pulsen möglichst gleich sein. Es gelang 2001 erstmalig, solche Pulse kontrolliert im Labor zu erzeugen, und das Verfahren wurde seither weiterentwickelt.

Messmethoden im  Attosekundenbereich

Da bei Messungen mit Attosekundenlaserpulsen die Heisenberg’sche Unschärferelation relevant wird, können Elektronendynamiken nicht mehr im klassischen Bild der Physik gemessen werden. Sie besagt, dass Ort und Impuls (und damit Geschwindigkeit) eines quantenmechanischen Teilchens zur selben Zeit nicht beliebig genau gemessen werden können. Somit müssen auch Messmethoden im Attosekundenbereich im Vorhinein mit Blick auf diese Unschärferelation entwickelt werden. Eine möglichst genaue Auflösung des Impulsraums liefert dabei die „Velocity-Map Imaging“-Methode (VMI), mit einem Photoelektronen- Emissions- Mikroskop (PEEM) hingegen kann der Ort zu einem gewissen Zeitpunkt möglichst genau untersucht werden.

VMI-Methode

Die VMI-Methode wird unter anderem verwendet, um die Attosekunden- Streakkamera zu entwickeln. Diese Kamera ermöglicht es Wissenschaftlerinnen und Wissenschaftlern, mithilfe eines Attosekun den- Laser pulses ein Elektron aus dem zu untersuchenden System zu ionisieren. Dieses Elektron wird durch einen zweiten Laserpuls im infraroten Spektrum beschleunigt und schlussendlich detektiert. Die Beschleunigung des Elektrons hängt unter anderem auch von Materialkonstanten ab. Durch Veränderung der Zeit zwischen den beiden Pulsen kann so ein Bild der Ionisationsdynamik der Probe gewonnen werden.

Oberflächenplasmonen

Die Photoelektronen-Emissions-Mikroskopie wird von Wissenschaftlerinnen und Wissenschaftlern verwendet, um die Reaktion von Elektronen auf einen einfallenden Laserpuls zu beobachten. Goldnanopartikel zum Beispiel verhalten sich ganz anders als massives Gold. Kennt man den goldenen Schimmer des Edelmetalls von Schmuck, denken hingegen wenige bei roten Kirchenfenstern an Gold, aber hier ist es „nanoklein“. In solchen Nanopartikeln werden Elektronen durch das elektrische Feld des einfallenden Lichts kollektiv verschoben. Es kommt unter den Elektronen zu kohärenten Schwingungen, Oberflächenplasmonen genannt. Diese werden dann mit einem zweiten Laserpuls, dem Attosekundenpuls, „foto gra fiert“. Variiert man wiederum die Zeit zwischen dem anregenden und dem abfragenden Laserpuls, kann man erkennen, wie solche Verschiebungen zu Stande kommen.

Jeanette Gehlert, Deutsches Jungforschernetzwerk – juFORUM e.V.


Deutsches Jungforschernetzwerk:

Das Deutsche Jungforschernetzwerk –  juFORUM e. V. ist ein Verein, der den  produktiven Austausch zwischen  wissenschaftlich interessierten jungen  Menschen fördert. In ihm engagieren  sich Jungforscher für Jungforscher. www.juforum.de


Literatur- und Linktipps:

F. Krausz, M. Ivanov: Attosecond  physics. Review of Modern Physics 81,  163–234 (2009).

Max-Planck-Institut für Quantenoptik:  www.attoworld.de

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Schüler und Schülerin sitzen an einem Tisch im Klassenzimmer, während ihnen die Lehrerin etwas erklärt
11. Februar, 2025
Die Auseinandersetzung mit politischer Neutralität in Schulen und die Verantwortung von Lehrkräften in gesellschaftlichen Krisensituationen sind von zentraler Bedeutung für die Weiterentwicklung und den Schutz einer demokratischen und menschenfreundlichen Gesellschaft. Der Beutelsbacher Konsens bietet seit Jahrzehnten Orientierung für die politische Bildung in der Schule, auch über den Politikunterricht hinaus. Er betont die Notwendigkeit, kontroverse Themen im Unterricht kontrovers zu behandeln, ohne die Schüler:innen dabei zu indoktrinieren.
Mädchen löst eine Matheaufgabe
22. Januar, 2025
Trotz vielfältiger Maßnahmen in den Bereichen Gendersensibilisierung, Geschlechtergerechtigkeit und Chancengleichheit sind Frauen in Deutschland in MINT-Berufen im Schnitt immer noch unterrepräsentiert. Zwar gibt es mittlerweile Fachgebiete mit paritätischer Verteilung (etwa Biologie, Medizin), aber auch viele Fachgebiete mit weiterhin extrem niedrigen Frauenanteilen (beispielsweise Physik, Ingenieurswissenschaften). Das zeigt, wie wichtig es ist, eine gendersensible MINT-Bildung zu fördern, die Mädchen und junge Frauen gezielt ermutigt, sich in bisher männerdominierten Bereichen auszuprobieren und langfristig Fuß zu fassen.
Bild eines Schülers mit VR-Brille
16. Januar, 2025
Kann die Zukunft uns verzaubern? Oft blicken wir mit gemischten Gefühlen auf das, was vor uns liegt. Doch Trend- und Zukunftsforscher wie Matthias Horx ermutigen uns, die Möglichkeiten von morgen nicht nur als mitunter Angst einflößende Herausforderung, sondern auch als vielversprechende Chance zu sehen. Sein Buch Der Zauber der Zukunft lädt dazu ein, sich mit einem positiven Blick auf Veränderungen einzulassen – ein Gedanke, der gerade für Lehrkräfte spannend ist. Doch wie können wir diese Perspektive auch in die Klassenzimmer bringen?
Mit dem DESI-Instrument in Arizona wird gegenwärtig eine dreidimensionale Karte der Position und Bewegung vieler Millionen Galaxien erstellt
27. November, 2024
Der Erkenntnisfortschritt der modernen Kosmologie verlief in den letzten zwei, drei Jahrzehnten rasant. Und doch sind die Konsequenzen äußerst kurios. Noch tappt die Wissenschaft vom Universum buchstäblich im Dunkeln, denn der Hauptbestandteil des Alls ist rätselhaft.
Strahlend heller Sonnenschein am klaren blauen Himmel mit ein paar zarten, dünnen Wolken im Hintergrund.
25. November, 2024
Wie fängt man Sonnenlicht am besten ein? Das ist nicht nur bei der Aufstellung von Photovoltaikanlagen wichtig, sondern auch für die Sonnenenergiewandler der Pflanzen, also bei ihren Blättern und deren Verzweigung und Ausrichtung. Es ist nicht vorteilhaft, wenn sie sich gegenseitig im Wege stehen und beschatten. Die Blattstellung folgt einem geometrischen Muster, das, mathematisch betrachtet, mit Spiralen, Selbstähnlichkeit, Fibonacci-Zahlen und dem Goldenen Winkel zu tun hat.
Mehrere Hände, die in einem Klassenzimmer vor einer Tafel mit mathematischen Formeln in die Luft gehoben sind
15. November, 2024
Bildungsdiskussionen in Deutschland sind immer auf Messers Schneide: Auf der einen Seite müssen wir darüber sprechen, was wir eigentlich erreichen wollen. Auf der anderen Seite soll es nicht in langwierige Diskussionen über abstrakte Begriffe abdriften. Was vonnöten ist, ist ein Kern, der die Diskussion bestimmt. Dieser liegt darin, warum wir noch Schulen haben. Sie sind Orte des Lernens – oder sollten es sein. Wir brauchen einen Gegenentwurf zu dem traditionellen Schulverständnis.
Energiefresser Internet
28. Oktober, 2024
Das Internet ist zu einem unverzichtbaren Teil unseres Alltags geworden. Wir alle nutzen es, wenn auch zu ganz unterschiedlichen Anteilen, zur Kommunikation, Unterhaltung, Arbeit und Bildung. Doch kaum jemand macht sich Gedanken darüber, wie viel Energie für all diese Dienste und Daten im Netz aufgewendet werden muss.
Mikrophon mit Publikum im Hintergrund
13. August, 2024
Im ersten Teil der Reihe über TED Talks ging es um Gamification-Ansätze im Klassenzimmer, um den „Schüler“ ChatGPT und darum, wie künstliche Intelligenz das Bildungssystem bereichern kann. Inzwischen ist das TED-Universum um einige weitere inspirierende Talks zum Thema Bildung angewachsen – und auch ältere Talks haben nichts an Aktualität verloren, denn der Wandel der Bildungslandschaft scheint ein immerwährendes Thema zu sein. Grund genug, immer mal über den eigenen Tellerrand zu schauen und sich für den eigenen Unterricht inspirieren zu lassen, etwa mit einem neuen Blick auf Tests und Klassenarbeiten.
Welcome Collection London
19. Juli, 2024
Wie groß ist der Radius der Erde? Fallen alle Objekte mit derselben Geschwindigkeit? Und warum erscheinen die Farben eines Regenbogens immer in der gleichen Reihenfolge? Bei all dem Wissen, das uns das Internet heute in Sekundenschnelle wie auf einem goldenen Tablett präsentiert, vergessen wir allzu oft, welch jahrhundertealte Geschichte hinter so manchen Fakten steckt – und wie viel Versuch und Irrtum.
Header_MZ Blogbeitrag_04-2023 (12)
18. Juni, 2024
Eine auf den ersten Blick völlig unförmige Figur wird um eine Achse gedreht. Plötzlich nimmt ihr Schatten die Gestalt einer aus einer Kindersendung wohlbekannten Maus an. Dreht man sie weiter, erscheinen nacheinander die beiden besten Freunde der Maus: ein Elefant und eine Ente. Wie kann das sein?
Header_MZ Blogbeitrag_04-2023 (11)
28. Mai, 2024
Inmitten der fortschreitenden Debatte über nachhaltige Mobilität ist der Verbrennungsmotor nach wie vor ein zentraler Akteur auf deutschen Straßen und macht den Verkehrssektor zu einem der größten CO2-Verursacher. Um den Klimawandel zu stoppen, müssen wir den CO2-Ausstoß jedoch reduzieren. Die Nutzung erneuerbarer Energien wie Solarenergie, Windenergie, Wasserkraft und Geothermie anstelle von fossilen Brennstoffen könnte genau dazu beitragen. Der Verkehrssektor könnte durch die Umstellung von Verbrennungsmotoren auf Elektroantriebe oder sogenannte E-Fuels nahezu emissionsfrei sein und somit die Umwelt und das Klima schützen und das Leben auf unserem Planeten nachhaltiger gestalten.
Blogbeitrag_Fachkräftemangel
14. Mai, 2024
Obwohl die Digitalisierung ist in den letzten Jahrzehnten viele Bereiche unseres Lebens verändert hat, ist die Integration digitaler Technologien in Bildungseinrichtungen noch nicht so weit fortgeschritten, wie es sich so manche Lehrkraft und so manche Schüler:in wünschen würde. Dabei werden ebendiese Schüler:innen von heute die IT-Fachkräfte von morgen sein.