Skip to content

Attosekundenlaser – kürzere Pulse, schnellere  Dynamiken und kleinere Strukturen

Warum und zu welchem Zweck werden Laser benötigt, deren Pulsdauer kürzer als eine Femtosekunde (1 fs = 1 * 10-15 s) ist?

Bereits mit Femtosekundenlasern ist es Wissenschaftlerinnen und Wissenschaftlern gelungen, die Bewegungen von Atomkernen unter anderem in Molekülen zu verstehen. Sie senden keinen dauerhaften Laserstrahl aus, sondern kontinuierlich Pulse von einer Länge im Femtosekundenbereich (1 fs = 1*10-15 s, Femtosekunden bereich bedeutet: 1–999 fs). Um die deutlich kleineren und somit auch schnelleren Elektronen zu beobachten, sind Femtosekundenlaser allerdings zu langsam. Dafür benötigt man Pulslängen im Attosekundenbereich (1 as = 1 * 10-18 s = 0,000 000 000 000 000 001 s). Um mit den Attosekunden-Laserpulsen Forschung zu betreiben, muss jeder Puls in einem Zug aus Pulsen möglichst gleich sein. Es gelang 2001 erstmalig, solche Pulse kontrolliert im Labor zu erzeugen, und das Verfahren wurde seither weiterentwickelt.

Messmethoden im  Attosekundenbereich

Da bei Messungen mit Attosekundenlaserpulsen die Heisenberg’sche Unschärferelation relevant wird, können Elektronendynamiken nicht mehr im klassischen Bild der Physik gemessen werden. Sie besagt, dass Ort und Impuls (und damit Geschwindigkeit) eines quantenmechanischen Teilchens zur selben Zeit nicht beliebig genau gemessen werden können. Somit müssen auch Messmethoden im Attosekundenbereich im Vorhinein mit Blick auf diese Unschärferelation entwickelt werden. Eine möglichst genaue Auflösung des Impulsraums liefert dabei die „Velocity-Map Imaging“-Methode (VMI), mit einem Photoelektronen- Emissions- Mikroskop (PEEM) hingegen kann der Ort zu einem gewissen Zeitpunkt möglichst genau untersucht werden.

VMI-Methode

Die VMI-Methode wird unter anderem verwendet, um die Attosekunden- Streakkamera zu entwickeln. Diese Kamera ermöglicht es Wissenschaftlerinnen und Wissenschaftlern, mithilfe eines Attosekun den- Laser pulses ein Elektron aus dem zu untersuchenden System zu ionisieren. Dieses Elektron wird durch einen zweiten Laserpuls im infraroten Spektrum beschleunigt und schlussendlich detektiert. Die Beschleunigung des Elektrons hängt unter anderem auch von Materialkonstanten ab. Durch Veränderung der Zeit zwischen den beiden Pulsen kann so ein Bild der Ionisationsdynamik der Probe gewonnen werden.

Oberflächenplasmonen

Die Photoelektronen-Emissions-Mikroskopie wird von Wissenschaftlerinnen und Wissenschaftlern verwendet, um die Reaktion von Elektronen auf einen einfallenden Laserpuls zu beobachten. Goldnanopartikel zum Beispiel verhalten sich ganz anders als massives Gold. Kennt man den goldenen Schimmer des Edelmetalls von Schmuck, denken hingegen wenige bei roten Kirchenfenstern an Gold, aber hier ist es „nanoklein“. In solchen Nanopartikeln werden Elektronen durch das elektrische Feld des einfallenden Lichts kollektiv verschoben. Es kommt unter den Elektronen zu kohärenten Schwingungen, Oberflächenplasmonen genannt. Diese werden dann mit einem zweiten Laserpuls, dem Attosekundenpuls, „foto gra fiert“. Variiert man wiederum die Zeit zwischen dem anregenden und dem abfragenden Laserpuls, kann man erkennen, wie solche Verschiebungen zu Stande kommen.

Jeanette Gehlert, Deutsches Jungforschernetzwerk – juFORUM e.V.


Deutsches Jungforschernetzwerk:

Das Deutsche Jungforschernetzwerk –  juFORUM e. V. ist ein Verein, der den  produktiven Austausch zwischen  wissenschaftlich interessierten jungen  Menschen fördert. In ihm engagieren  sich Jungforscher für Jungforscher. www.juforum.de


Literatur- und Linktipps:

F. Krausz, M. Ivanov: Attosecond  physics. Review of Modern Physics 81,  163–234 (2009).

Max-Planck-Institut für Quantenoptik:  www.attoworld.de

Beitrag teilen:

Facebook
Twitter
LinkedIn
Pinterest
XING
WhatsApp
Email

Ähnliche Beiträge

Mit Wasserstoff in eine grüne Zukunft
4. Juli, 2022
Das Pariser Klimaziel, die globale Erderwärmung auf 1,5 Grad Celsius zu beschränken, könnte noch erreicht werden. Aber es ist eine Herkulesaufgabe, für die wir den Ausbau der erneuerbaren Energien vervielfachen müssen. Und wir brauchen sogenannten grünen Wasserstoff, der mithilfe von regenerativem Strom hergestellt wird. Die Technologie spielt eine Schlüsselrolle auf dem Weg zur Klimaneutralität, die wir weltweit bis Mitte des Jahrhunderts erreichen wollen.
Der menschliche Faktor oder wie berufliches   Miteinander gelingen kann
28. Juni, 2022
Es ist unumstritten: Beruflicher Erfolg hängt von einer guten Ausbildung ab. In den letzten Jahrzehnten hat allerdings auch der Wert von sozialen Fähigkeiten wie Kooperationsbereitschaft erheblich zugenommen. Fähigkeiten wie diese lassen das berufliche Miteinander besser gelingen. Und dafür sind typische menschliche Verhaltensmuster verantwortlich.
Kollision der Giganten
8. Juni, 2022
Die Zukunft der Milchstraße wird turbulent – erst stößt sie mit der Andromeda-Galaxie zusammen, später auch mit der Triangulum-Galaxie. Hier ein Vorausblick auf den Crash der Sterneninseln.
Computer: Zufälle gibt es nicht
30. Mai, 2022
Ein Zufall lässt sich am besten definieren als ein nicht vorherzusagendes Ereignis. Diese Eigenschaft kommt in vielen Bereichen zur Anwendung, sei es im Glücksspiel oder bei der Auswahl von Teilnehmer*innen an Meinungsumfragen. In diesen Fällen sind Zufallszahlen die Basis für Fairnessund Sicherheit. Auch für Verschlüsselungen sind Zufallszahlen unentbehrlich. Computer und Taschenrechner kennen jedoch keinen Zufall.
Schwarmverhalten – lieber gemeinsam als einsam
23. Mai, 2022
Nicht nur wir Menschen mögen und brauchen Gesellschaft, das Gleiche gilt für viele Tiere. In der Gemeinschaft nutzen sie Sinne und Intelligenz der vielen. So werden Fähigkeiten entwickelt, die ein Individuum allein nicht hat.
Batterien – Speicher der Zukunft?
6. Mai, 2022
Die Erfindung der Lithium-Ionen-Batterie hat unseren Alltag revolutioniert. Nicht nur das handliche Smartphone, sondern auch kleine Laptops mit langer Batterielaufzeit wurden dadurch möglich. Darüber hinaus hat die Batterie die Elektromobilität alltagstauglich gemacht. Doch wie sieht es mit der Nachhaltigkeit des kleinen Stromspeichers aus?
Wie unsere Gedanken entstehen und warum wir sie lesen können
13. April, 2022
Im Lied heißt es: „Die Gedanken sind frei, kein Mensch kann sie wissen …“. Gilt dies auch noch heute? Oder gelingt es mit modernen Methoden, doch herauszufinden, was uns gerade beschäftigt? Der MINT Zirkel sprach mit dem Hirnforscher Prof. Dr. John-Dylan Haynes über den Stand der Forschung.
Neues aus der Milchstraße
28. März, 2022
In den vergangenen Jahren hat sich das Verständnis von der Struktur und Entwicklung der Milchstraße enorm erweitert und teilweise gewandelt. Entdeckt wurden darin neue Spiralarme und gigantische Gebilde, weiträumige Schwingungen sowie uralte Reste kannibalisierter Zwerggalaxien.
Kann der Hund Analysis?
14. März, 2022
Wenn ein Hund nicht auf dem kürzesten (geraden), sondern auf dem zeitoptimalen (geknickten) Weg ins Wasser springt, um den Ball zu apportieren, löst er ein Minimierungsproblem. Das ist immerhin so kompliziert, dass es als Klausuraufgabe im zweiten Semester Analysis taugt. Und da kommt Timothy Pennings, Mathematikprofessor an einer kleinen Universität im ländlichen Michigan, und behauptet, sein Hund Elvis könne das auch!
Vom Feld bis auf den Teller: Was sind die besten Zutaten für kulinarischen Klimaschutz?
4. März, 2022
Unsere Ernährung ist ein echtes Schwergewicht auf der Klimabilanz. Mit durchschnittlich 1,7 Tonnen CO2-Äquivalenten pro Kopf und Jahr schlägt diese beim CO2-Fußabdruck einer und eines jeden Deutschen zu Buche. Zum Vergleich: In Indien verursacht ein Mensch für seinen gesamten Lebensstil im Durchschnitt etwa 1,7 Tonnen CO2-Emissionen. Höchste Zeit also, unsere Ernährungsgewohnheiten auf Klimadiät zu setzen.
AlphaFold – ein Algorithmus für das Protein-Origami
22. Februar, 2022
Ob Einzeller oder Vielzeller, die Lebensfunktionen in der Zelle basieren auf winzig kleinen Grundbausteinen, den Proteinen. Wie einzelne Proteine genau aussehen, wird in der Strukturbiologie erforscht. Dort werden die 3-D-Strukturen von Proteinen sichtbar gemacht und aus ihrem Aufbau zelluläre Funktionen und Wirkmechanismen abgeleitet. Mit dem lernfähigen KI-System AlphaFold 2.0 hat die Strukturbiologie nun neue Unterstützung.